BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

579 related articles for article (PubMed ID: 6423966)

  • 1. [Superspecificity of aminoacyl-tRNA-synthases].
    Favorova OO
    Mol Biol (Mosk); 1984; 18(1):205-26. PubMed ID: 6423966
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Switching the amino acid specificity of an aminoacyl-tRNA synthetase.
    Agou F; Quevillon S; Kerjan P; Mirande M
    Biochemistry; 1998 Aug; 37(32):11309-14. PubMed ID: 9698378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alternative pathways for editing non-cognate amino acids by aminoacyl-tRNA synthetases.
    Jakubowski H; Fersht AR
    Nucleic Acids Res; 1981 Jul; 9(13):3105-17. PubMed ID: 7024910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental evidence for kinetic proofreading in the aminoacylation of tRNA by synthetase.
    Yamane T; Hopfield JJ
    Proc Natl Acad Sci U S A; 1977 Jun; 74(6):2246-50. PubMed ID: 329276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrolytic action of aminoacyl-tRNA synthetases from baker's yeast: "chemical proofreading" preventing acylation of tRNA(I1e) with misactivated valine.
    von der Haar F; Cramer F
    Biochemistry; 1976 Sep; 15(18):4131-8. PubMed ID: 786367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Increasing specificity of tryptophanyl-tRNA synthetase after amino acid activation].
    Degtiarev SKh; Malygin EG; Favorova OO; Kiselev LL
    Mol Biol (Mosk); 1982; 16(1):170-6. PubMed ID: 7070377
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The plant aminoacyl-tRNA synthetases. Effect of sodium chloride on tRNA aminoacylation and aminoacyl-tRNA decomposition catalysed by aminoacyl-tRNA synthetases from yellow lupin seeds.
    Jakubowski H; Pawelkiewicz J
    Acta Biochim Pol; 1977; 24(2):163-70. PubMed ID: 195427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isoleucyl-tRNA synthetase from Baker's yeast. Catalytic mechanism, 2',3'-specificity and fidelity in aminoacylation of tRNAIle with isoleucine and valine investigated with initial-rate kinetics using analogs of tRNA, ATP and amino acids.
    Freist W; Cramer F
    Eur J Biochem; 1983 Mar; 131(1):65-80. PubMed ID: 6339236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substrate selection by aminoacyl-tRNA synthetases.
    Ibba M; Thomann HU; Hong KW; Sherman JM; Weygand-Durasevic I; Sever S; Stange-Thomann N; Praetorius M; Söll D
    Nucleic Acids Symp Ser; 1995; (33):40-2. PubMed ID: 8643392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Order of binding of substrate to valyl-tRNA synthetase from Bacillus stearothermophilus in amino acid activation reaction.
    Kakitani M; Tonomura B; Hiromi K
    Biochem Int; 1987 Apr; 14(4):597-603. PubMed ID: 3453086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amino acid selectivity in the aminoacylation of coenzyme A and RNA minihelices by aminoacyl-tRNA synthetases.
    Jakubowski H
    J Biol Chem; 2000 Nov; 275(45):34845-8. PubMed ID: 10995737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The fidelity of the translation of the genetic code.
    Sankaranarayanan R; Moras D
    Acta Biochim Pol; 2001; 48(2):323-35. PubMed ID: 11732604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Valyl-tRNA, isoleucyl-tRNA and tyrosyl-tRNA synthetase from baker's yeast. Substrate specificity with regard to ATP analogs and mechanism of the aminoacylation reaction.
    Freist W; von der Haar F; Faulhammer H; Cramer F
    Eur J Biochem; 1976 Jul; 66(3):493-7. PubMed ID: 782885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aminoacyl-tRNA synthetases from baker's yeast: reacting site of enzymatic aminoacylation is not uniform for all tRNAs.
    Cramer F; Faulhammer H; von der Haar F; Sprinzl M; Sternbach H
    FEBS Lett; 1975 Aug; 56(2):212-4. PubMed ID: 1098930
    [No Abstract]   [Full Text] [Related]  

  • 15. An aminoacyl-tRNA synthetase with a defunct editing site.
    Lue SW; Kelley SO
    Biochemistry; 2005 Mar; 44(8):3010-6. PubMed ID: 15723544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional idiosyncrasies of tRNA isoacceptors in cognate and noncognate aminoacylation systems.
    Fender A; Sissler M; Florentz C; Giegé R
    Biochimie; 2004 Jan; 86(1):21-9. PubMed ID: 14987797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enlarging the amino acid set of Escherichia coli by infiltration of the valine coding pathway.
    Döring V; Mootz HD; Nangle LA; Hendrickson TL; de Crécy-Lagard V; Schimmel P; Marlière P
    Science; 2001 Apr; 292(5516):501-4. PubMed ID: 11313495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural basis for substrate recognition by the editing domain of isoleucyl-tRNA synthetase.
    Fukunaga R; Yokoyama S
    J Mol Biol; 2006 Jun; 359(4):901-12. PubMed ID: 16697013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [The formation of ATP from adenosine 5'-phosphoroimidazolide and pyrophosphate catalyzed by valyl-tRNA-synthetase].
    Biriukov AI; Osipova TI; Khomutov RM
    Biokhimiia; 1976 Oct; 41(10):1905-6. PubMed ID: 192333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isoleucyl-tRNA synthetase from Escherichia coli MRE 600: discrimination between isoleucine and valine with modulated accuracy.
    Freist W; Cramer F
    Biol Chem Hoppe Seyler; 1987 Mar; 368(3):229-37. PubMed ID: 3297096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.