These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 6425268)

  • 21. Expression of antibiotic resistance genes from Escherichia coli in Bacillus subtilis.
    Kreft J; Burger KJ; Goebel W
    Mol Gen Genet; 1983; 190(3):384-9. PubMed ID: 6410152
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chloramphenicol-inducible gene expression in Bacillus subtilis is independent of the chloramphenicol acetyltransferase structural gene and its promoter.
    Mongkolsuk S; Ambulos NP; Lovett PS
    J Bacteriol; 1984 Oct; 160(1):1-8. PubMed ID: 6090404
    [TBL] [Abstract][Full Text] [Related]  

  • 23. tetA(L) mutants of a tetracycline-sensitive strain of Bacillus subtilis with the polynucleotide phosphorylase gene deleted.
    Bechhofer DH; Stasinopoulos SJ
    J Bacteriol; 1998 Jul; 180(13):3470-3. PubMed ID: 9642204
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chloramphenicol-inducible gene expression in Bacillus subtilis.
    Duvall EJ; Williams DM; Lovett PS; Rudolph C; Vasantha N; Guyer M
    Gene; 1983 Oct; 24(2-3):171-7. PubMed ID: 6416927
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effects of deletions in the leader sequence of cat-86, a chloramphenicol-resistance gene isolated from Bacillus pumilus.
    Harwood CR; Bell DE; Winston AK
    Gene; 1987; 54(2-3):267-73. PubMed ID: 3477516
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Resistance to chloramphenicol in Proteus mirabilis by expression of a chromosomal gene for chloramphenicol acetyltransferase.
    Charles IG; Harford S; Brookfield JF; Shaw WV
    J Bacteriol; 1985 Oct; 164(1):114-22. PubMed ID: 3900034
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nonidentity of the site of action of erythromycin A and chloramphenicol on Bacillus subtilis ribosomes.
    Oleinick NL; Wilhelm JM; Corcoran JW
    Biochim Biophys Acta; 1968 Jan; 155(1):290-2. PubMed ID: 4967315
    [No Abstract]   [Full Text] [Related]  

  • 28. [On the suppression of protein synthesis and stimulation of RNA synthesis during the action of some antibiotics on Bacillus subtilis mutants].
    Bibikova MV; Gauze GF; Kochetkova GV
    Antibiotiki; 1969 Jun; 14(6):486-9. PubMed ID: 4979790
    [No Abstract]   [Full Text] [Related]  

  • 29. Isolation and expression of a constitutive variant of the chloramphenicol-inducible plasmid gene cat-86 under control of the Bacillus subtilis 168 amylase promoter.
    Nicholson WL; Chambliss GH; Buckbinder L; Ambulos NP; Lovett PS
    Gene; 1985; 35(1-2):113-20. PubMed ID: 3928441
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genetic mapping of a mutation causing an alteration in Bacillus subtilis ribosomal protein S4.
    Henkin TM; Chambliss GH
    Mol Gen Genet; 1984; 193(2):364-9. PubMed ID: 6420647
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genetic analysis of a streptomycin-resistant oligosporogenous Bacillus subtilis mutant.
    Henkin TM; Chambliss GH
    J Bacteriol; 1984 Jan; 157(1):202-10. PubMed ID: 6418717
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Post-transcriptional regulation of chloramphenicol acetyl transferase.
    Byeon WH; Weisblum B
    J Bacteriol; 1984 May; 158(2):543-50. PubMed ID: 6202672
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gene amplification in Bacillus subtilis.
    Young M
    J Gen Microbiol; 1984 Jul; 130(7):1613-21. PubMed ID: 6432950
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The genetics of ribosomes in Bacillus subtilis.
    Smith I; Goldthwaite C; Dubnau D
    Cold Spring Harb Symp Quant Biol; 1969; 34():85-9. PubMed ID: 4985892
    [No Abstract]   [Full Text] [Related]  

  • 35. Mapping a cloned gene under sporulation control by inserttion of a drug resistance marker into the Bacillus subtilis chromosome.
    Haldenwang WG; Banner CD; Ollington JF; Losick R; Hoch JA; O'Connor MB; Sonenshein AL
    J Bacteriol; 1980 Apr; 142(1):90-8. PubMed ID: 6768719
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Amino acid replacement in the protein S5 from a spectinomycin resistant mutant of Bacillus subtilis.
    Itoh T
    Mol Gen Genet; 1976 Feb; 144(1):39-42. PubMed ID: 131241
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ribosomal proteins from streptomycin-resistant and dependent mutants, and revertants from streptomycin-dependence to independence in Bacillus subtilis.
    Ito T; Kosugi H; Higo K; Osawa S
    Mol Gen Genet; 1975 Sep; 139(4):293-301. PubMed ID: 810662
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In vitro expression of a Tn9-derived chloramphenicol acetyltransferase gene fusion by using a Bacillus subtilis system.
    Zaghloul TI; Doi RH
    J Bacteriol; 1987 Mar; 169(3):1212-6. PubMed ID: 3102458
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Integration and amplification of plasmid DNA in the Bacillus subtilis chromosome].
    Shevchenko TN; Timashova EO; Fomin VV; Telegeev GD
    Tsitol Genet; 1989; 23(2):53-8. PubMed ID: 2502873
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Expression of human dihydrofolate reductase cDNA and its induction by chloramphenicol in Bacillus subtilis.
    Morandi C; Perego M; Mazza PG
    Gene; 1984 Oct; 30(1-3):69-77. PubMed ID: 6096225
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.