BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 6425269)

  • 1. Synthesis of oxaloacetate in Bacillus subtilis mutants lacking the 2-ketoglutarate dehydrogenase enzymatic complex.
    Fisher SH; Magasanik B
    J Bacteriol; 1984 Apr; 158(1):55-62. PubMed ID: 6425269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetics of the alpha-ketoglutarate dehydrogenase complex of Bacillus subtilis.
    Hoch JA; Coukoulis HJ
    J Bacteriol; 1978 Jan; 133(1):265-9. PubMed ID: 412834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of C4-dicarboxylic acid transport in Bacillus subtilis.
    Ghei OK; Kay WW
    Can J Microbiol; 1975 Apr; 21(4):527-36. PubMed ID: 804342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Properties of an inducible C 4 -dicarboxylic acid transport system in Bacillus subtilis.
    Ghei OK; Kay WW
    J Bacteriol; 1973 Apr; 114(1):65-79. PubMed ID: 4633350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of the dicarboxylic acid part of the citric acid cycle in Bacillus subtilis.
    Ohné M
    J Bacteriol; 1975 Apr; 122(1):224-34. PubMed ID: 804468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activities of alpha-ketoisovalerate, pyruvate, and alpha-ketoglutarate dehydrogenases in a mutant of Bacillus subtilis.
    Tu CL; Kaneda T
    Can J Microbiol; 1976 Apr; 22(4):592-7. PubMed ID: 816442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 2-Ketoglutarate and the regulation of aconitase and histidase formation in Bacillus subtilis.
    Fisher SH; Magasanik B
    J Bacteriol; 1984 Apr; 158(1):379-82. PubMed ID: 6143742
    [TBL] [Abstract][Full Text] [Related]  

  • 8. alpha-Ketoglutarate dehydrogenase mutant of Rhizobium meliloti.
    Duncan MJ; Fraenkel DG
    J Bacteriol; 1979 Jan; 137(1):415-9. PubMed ID: 762018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Presence and regulation of the alpha-ketoglutarate dehydrogenase multienzyme complex in the filamentous fungus Aspergillus niger.
    Meixner-Monori B; Kubicek CP; Habison A; Kubicek-Pranz EM; Röhr M
    J Bacteriol; 1985 Jan; 161(1):265-71. PubMed ID: 3968029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of aconitase synthesis in Bacillus subtilis: induction, feedback repression, and catabolite repression.
    Ohné M
    J Bacteriol; 1974 Mar; 117(3):1295-305. PubMed ID: 4205196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developmental block in citric acid cycle mutants of Bacillus subtilis.
    Freese EB; Marks CL
    J Bacteriol; 1973 Dec; 116(3):1466-8. PubMed ID: 4201776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tricarboxylic acid cycle without malate dehydrogenase in Streptomyces coelicolor M-145.
    Takahashi-Íñiguez T; Barrios-Hernández J; Rodríguez-Maldonado M; Flores ME
    Arch Microbiol; 2018 Nov; 200(9):1279-1286. PubMed ID: 29936645
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biosynthesis of o-succinylbenzoic acid in Bacillus subtilis: identification of menD mutants and evidence against the involvement of the alpha-ketoglutarate dehydrogenase complex.
    Palaniappan C; Taber H; Meganathan R
    J Bacteriol; 1994 May; 176(9):2648-53. PubMed ID: 8169214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation of Bacillus subtilis mutants pleiotropically insensitive to glucose catabolite repression.
    Fisher SH; Magasanik B
    J Bacteriol; 1984 Mar; 157(3):942-4. PubMed ID: 6421803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacillus subtilis glutamine synthetase mutants pleiotropically altered in glucose catabolite repression.
    Fisher SH; Sonenshein AL
    J Bacteriol; 1984 Feb; 157(2):612-21. PubMed ID: 6141156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of different nutritional conditions on the synthesis of tricarboxylic acid cycle enzymes.
    Hanson RS; Cox DP
    J Bacteriol; 1967 Jun; 93(6):1777-87. PubMed ID: 4960893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catabolism of alpha-ketoglutarate by a sucA mutant of Bradyrhizobium japonicum: evidence for an alternative tricarboxylic acid cycle.
    Green LS; Li Y; Emerich DW; Bergersen FJ; Day DA
    J Bacteriol; 2000 May; 182(10):2838-44. PubMed ID: 10781553
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Repression of sporulation in Bacillus subtilis by L-malate.
    Ohné M; Rutberg B
    J Bacteriol; 1976 Feb; 125(2):453-60. PubMed ID: 812866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth and sporulation of Bacillus subtilis mutants blocked in the pyruvate dehydrogenase complex.
    Freese E; Fortnagel U
    J Bacteriol; 1969 Sep; 99(3):745-56. PubMed ID: 4984174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The activity of alpha-ketoglutarate dehydrogenase and succinate dehydrogenase in the liver of the developing chick embryo. The relation to the rate of the tricarboxylic acid cycle].
    Ermolaeva LP; Surmava MK
    Ontogenez; 1988; 19(6):640-4. PubMed ID: 3231403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.