These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Conformational studies on phenethylamine hallucinogens: the role of alpha alkyl substitution. Makriyannis A; Knittel J NIDA Res Monogr; 1978; (22):464-78. PubMed ID: 101888 [No Abstract] [Full Text] [Related]
5. Structural correlation between apomorphine and LSD: involvement of dopamine as well as serotonin in the actions of hallucinogens. Nichols DE J Theor Biol; 1976 Jun; 59(1):167-77. PubMed ID: 7711 [No Abstract] [Full Text] [Related]
6. Correlation of psychotomimetic activity of phenethylamines and amphetamines with 1-octanol-water partition coefficients. Barfknecht CF; Nichols DE J Med Chem; 1975 Feb; 18(2):208-10. PubMed ID: 1120990 [TBL] [Abstract][Full Text] [Related]
9. A crystallographic and theoretical study of the conformation of DOET and its significance for the hallucinogenic amphetamines. Horn AS; Post ML; Kennard O; Di Sanserverino R J Pharm Pharmacol; 1975 Jan; 27(1):13-7. PubMed ID: 235609 [TBL] [Abstract][Full Text] [Related]
10. A molecular approach to the study of structure-activity correlation for some amphetamines. Abdou MM J Psychoactive Drugs; 2001; 33(3):295-300. PubMed ID: 11718323 [TBL] [Abstract][Full Text] [Related]
11. Conformational study of lysergic acid derivatives in relation to their hallucinogenic and antiserotonin activities. Kumbar M NIDA Res Monogr; 1978; (22):374-407. PubMed ID: 101885 [No Abstract] [Full Text] [Related]
12. LSD and phenethylamine hallucinogens: new structural analogy and implications for receptor geometry. Nichols DE; Pfister WR; Yim GK Life Sci; 1978 Jun; 22(24):2165-70. PubMed ID: 672453 [No Abstract] [Full Text] [Related]
13. Psychotomimetic phenalkylamines as serotonin agonists: an SAR analysis. Kier LB; Glennon RA Life Sci; 1978 May; 22(18):1589-93. PubMed ID: 672414 [No Abstract] [Full Text] [Related]
14. Effect of 4-substitution on psychotomimetic activity of 2,5-dimethoxy amphetamines as studied by means of different substituent parameter scales. Neuvonen K; Neuvonen H; Fülöp F Bioorg Med Chem Lett; 2006 Jul; 16(13):3495-8. PubMed ID: 16644223 [TBL] [Abstract][Full Text] [Related]
15. The use of rigid analogues to probe hallucinogen receptors. Nichols DE; Weintraub HJ; Pfister WR; Yim GK NIDA Res Monogr; 1978; (22):70-83. PubMed ID: 101889 [No Abstract] [Full Text] [Related]
16. Photoelectron spectroscopic studies of hallucinogens: the use of ionization potentials in QSAR. Domelsmith LN; Houk KN NIDA Res Monogr; 1978; (22):423-40. PubMed ID: 101887 [No Abstract] [Full Text] [Related]
17. Differences between the mechanism of action of MDMA, MBDB, and the classic hallucinogens. Identification of a new therapeutic class: entactogens. Nichols DE J Psychoactive Drugs; 1986; 18(4):305-13. PubMed ID: 2880944 [No Abstract] [Full Text] [Related]
18. Synthesis and evaluation of 2,3-dihydrobenzofuran analogues of the hallucinogen 1-(2,5-dimethoxy-4-methylphenyl)-2-aminopropane: drug discrimination studies in rats. Nichols DE; Hoffman AJ; Oberlender RA; Riggs RM J Med Chem; 1986 Feb; 29(2):302-4. PubMed ID: 3950910 [TBL] [Abstract][Full Text] [Related]
19. Correlation between activity and electronic state of hallucinogenic amphetamines. Kang S; Green JP Nature; 1970 May; 226(5246):645. PubMed ID: 5444928 [No Abstract] [Full Text] [Related]
20. Use of dipole moment as a parameter in drug-receptor interaction and quantitative structure-activity relationship studies. Lien EJ; Guo ZR; Li RL; Su CT J Pharm Sci; 1982 Jun; 71(6):641-55. PubMed ID: 7097526 [No Abstract] [Full Text] [Related] [Next] [New Search]