These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 6425380)

  • 21. [Chemical mutagenesis and the use of indirect enzymatic criteria for the selection of virulent clones of Bacillus thuringiensis].
    Slavnova VS; Chigaleĭchik AD; Mazanov AL; Shevtsov VV
    Prikl Biokhim Mikrobiol; 1986; 22(4):543-7. PubMed ID: 3532089
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Proteolytic enzymes bound to Bac. thuringiensis crystals].
    Chestukhina GG; Zalunin IA; Kostina LI; Kotova TS; Katrukha SP; Lyublinskaya LA; Stepanova VM
    Biokhimiia; 1978 May; 43(5):857-64. PubMed ID: 656507
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dormant spores of Bacillus thuringiensis contain an inhibition of RNA polymerase.
    Iandolo JJ; Powell RL; Bulla LA
    Biochem Biophys Res Commun; 1976 Mar; 69(1):237-44. PubMed ID: 1259762
    [No Abstract]   [Full Text] [Related]  

  • 24. [A Bacillus thuringiensis Berliner mutant resistant to oxytetracycline, with temperature-sensitive sporulation].
    Fargette F; Grelet N
    C R Acad Hebd Seances Acad Sci D; 1975 Sep; 281(11):755-8. PubMed ID: 813848
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Exoprotease production by sporogenous and asporogenous mycobacillin non-producer mutants of Bacillus subtilis.
    Bose R; Ray B; Bose SK
    Folia Microbiol (Praha); 1979; 24(5):373-5. PubMed ID: 118901
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Improvement of bioinsecticides production through adaptation of Bacillus thuringiensis cells to heat treatment and NaCl addition.
    Ghribi D; Zouari N; Jaoua S
    J Appl Microbiol; 2005; 98(4):823-31. PubMed ID: 15752327
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification and characterization of a polysaccharide deacetylase gene from Bacillus thuringiensis.
    Hu K; Yang H; Liu G; Tan H
    Can J Microbiol; 2006 Oct; 52(10):935-41. PubMed ID: 17110961
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The protonmotive force in Pseudomonas aeruginosa and its relationship to exoprotease production.
    Whooley MA; McLoughlin AJ
    J Gen Microbiol; 1983 Apr; 129(4):989-96. PubMed ID: 6310028
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparative sensitivity to UV-B radiation of two Bacillus thuringiensis subspecies and other Bacillus sp.
    Myasnik M; Manasherob R; Ben-Dov E; Zaritsky A; Margalith Y; Barak Z
    Curr Microbiol; 2001 Aug; 43(2):140-3. PubMed ID: 11391479
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A gene encoding alanine racemase is involved in spore germination in Bacillus thuringiensis.
    Yan X; Gai Y; Liang L; Liu G; Tan H
    Arch Microbiol; 2007 May; 187(5):371-8. PubMed ID: 17165028
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of substrate on the regulation of exoprotease production by Pseudomonas aeruginosa ATCC 10145.
    Whooley MA; O'Callaghan JA; McLoughlin AJ
    J Gen Microbiol; 1983 Apr; 129(4):981-8. PubMed ID: 6411860
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pathogenicity of intrathoracically administrated Bacillus thuringiensis spores in Blatta orientalis.
    Porcar M; Navarro L; Jiménez-Peydró R
    J Invertebr Pathol; 2006 Sep; 93(1):63-6. PubMed ID: 16777139
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gamma-aminobutyric acid pathway and modified tricarboxylic acid cycle activity during growth and sporulation of Bacillus thuringiensis.
    Aronson JN; Borris DP; Doerner JF; Akers E
    Appl Microbiol; 1975 Sep; 30(3):489-92. PubMed ID: 1180554
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Method of measuring Bacillus anthracis spores in the presence of copious amounts of Bacillus thuringiensis and Bacillus cereus.
    Campbell GA; Mutharasan R
    Anal Chem; 2007 Feb; 79(3):1145-52. PubMed ID: 17263347
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Attempts at the further characterisation of exoprotease from Pseudomonas sp. strain S9.
    Skłodowska A; Matlakowska R
    Acta Microbiol Pol; 1993; 42(2):209-13. PubMed ID: 7509562
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Characteristics of the ultrastructural organization of Actinomyces rimosus and Actinomyces violocinereus in monocultures and in an association producing extracellular proteases].
    Gesheva VI; Kostrikina NA; Biriuzova VI; Landau NS; Egorov NS
    Mikrobiologiia; 1984; 53(1):98-102. PubMed ID: 6369085
    [TBL] [Abstract][Full Text] [Related]  

  • 37. SKPDT is a signaling peptide that stimulates sporulation and cry1Aa expression in Bacillus thuringiensis but not in Bacillus subtilis.
    Aceves-Diez AE; Robles-Burgueño R; de la Torre M
    Appl Microbiol Biotechnol; 2007 Aug; 76(1):203-9. PubMed ID: 17486337
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Extracellular serine proteinase of Bacillus thuringiensis].
    Epremian AS; Chestukhina GG; Azizbekian RR; Netyksa EM; Rudenskaia GN
    Biokhimiia; 1981 May; 46(5):920-9. PubMed ID: 7028140
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Germination of Bacillus thuringiensis spores in bacteriophagous nematodes (Nematoda: Rhabditida).
    Borgonie G; Van Driessche R; Leyns F; Arnaut G; De Waele D; Coomans A
    J Invertebr Pathol; 1995 Jan; 65(1):61-7. PubMed ID: 7876593
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The IspA protease's involvement in the regulation of the sporulation process of Bacillus thuringiensis is revealed by proteomic analysis.
    Chen FC; Shen LF; Tsai MC; Chak KF
    Biochem Biophys Res Commun; 2003 Dec; 312(3):708-15. PubMed ID: 14680823
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.