These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 6425860)

  • 21. Cooperative effects in the binding of pyridoxal 5'-phosphate to mitochondrial apo-aspartate aminotransferase.
    Garzillo AM; Marino G; Pispisa B
    FEBS Lett; 1984 May; 170(2):223-8. PubMed ID: 6723965
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Conformational changes in mitochondrial aspartate aminotransferase detected by a covalently attached fluorescent probe.
    Sandmeier E; Christen P
    Prog Clin Biol Res; 1984; 144B():117-24. PubMed ID: 6718394
    [No Abstract]   [Full Text] [Related]  

  • 23. Differences in thermodynamic stabilities among enzyme and coenzyme ligand complexes in aspartate aminotransferase.
    Iriarte A; Relimpio AM; Chlebowski JF; Martinez-Carrion M
    Prog Clin Biol Res; 1984; 144B():107-15. PubMed ID: 6718393
    [No Abstract]   [Full Text] [Related]  

  • 24. 31P nuclear magnetic resonance of mitochondrial aspartate aminotransferase. The effects of solution pH and ligand binding.
    Mattingly ME; Mattingly JR; Martinez-Carrion M
    J Biol Chem; 1982 Aug; 257(15):8872-8. PubMed ID: 7096340
    [No Abstract]   [Full Text] [Related]  

  • 25. [Pyridoxal enzymes, with special reference to aspartate aminotransferase and tryptophanase].
    Morino Y
    Tanpakushitsu Kakusan Koso; 1968 May; 13(6):574-85. PubMed ID: 4882060
    [No Abstract]   [Full Text] [Related]  

  • 26. Identification of coenzyme aldimine proton in 1H NMR spectra of pyridoxal 5'-phosphate dependent enzymes: aspartate aminotransferase isoenzymes.
    Morino Y; Nagashima F; Tanase S; Yamasaki M; Higaki T
    Biochemistry; 1986 Apr; 25(8):1917-25. PubMed ID: 3707919
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of anions on the substrate affinities of the pyridoxal and pyridoxamine forms of mitochondrial and supernatant aspartate transaminases.
    Cheng S; Michuda-Kozak C; Martinez-Carrion M
    J Biol Chem; 1971 Jun; 246(11):3623-30. PubMed ID: 5578911
    [No Abstract]   [Full Text] [Related]  

  • 28. Similarity between pyridoxal/pyridoxamine phosphate-dependent enzymes involved in dideoxy and deoxyaminosugar biosynthesis and other pyridoxal phosphate enzymes.
    Pascarella S; Bossa F
    Protein Sci; 1994 Apr; 3(4):701-5. PubMed ID: 8003988
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mammalian aspartate aminotransferase isozymes. From DNA to protein.
    Morino Y; Shimada K; Kagamiyama H
    Ann N Y Acad Sci; 1990; 585():32-47. PubMed ID: 2192615
    [No Abstract]   [Full Text] [Related]  

  • 30. Nuclear magnetic resonance of aspartate transaminase. A 19 F and 1 H investigation of the binding of dicarboxylic acids to various forms of each isoenzyme.
    Martinez-Carrion M; Cheng S; Relimpio AM
    J Biol Chem; 1973 Mar; 248(6):2153-60. PubMed ID: 4690598
    [No Abstract]   [Full Text] [Related]  

  • 31. Pyridoxal 5'-phosphate and analogs as probes of coenzyme-protein interaction.
    Yang BI; Metzler DE
    Methods Enzymol; 1979; 62():528-51. PubMed ID: 374981
    [No Abstract]   [Full Text] [Related]  

  • 32. Three-dimensional structure of a pyridoxal-phosphate-dependent enzyme, mitochondrial aspartate aminotransferase.
    Ford GC; Eichele G; Jansonius JN
    Proc Natl Acad Sci U S A; 1980 May; 77(5):2559-63. PubMed ID: 6930651
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of potassium iodide on aspartate aminotransferase.
    Burridge N; Churchich JE
    Eur J Biochem; 1974 Feb; 41(3):533-8. PubMed ID: 4856313
    [No Abstract]   [Full Text] [Related]  

  • 34. Use of trinitrobenzensulfonate for affinity labeling of lysine residues at phosphate binding sites of some enzymes.
    Hanau S; Dallocchio F; Rippa M
    Arch Biochem Biophys; 1993 Apr; 302(1):218-21. PubMed ID: 8470899
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Coenzyme dissociation, a possible determinant of short half-life of inducible enzymes in mammalian liver.
    Litwack G; Rosenfield S
    Biochem Biophys Res Commun; 1973 May; 52(1):181-8. PubMed ID: 4145827
    [No Abstract]   [Full Text] [Related]  

  • 36. Conformational properties of the isoenzymes of aspartate transaminase and the enzyme-substrate complexes.
    Martinez-Carrion M; Tiemeier DC; Peterson DL
    Biochemistry; 1970 Jun; 9(13):2574-82. PubMed ID: 5450225
    [No Abstract]   [Full Text] [Related]  

  • 37. The role of pyridoxal phosphate in the catalysis of glycogen phosphorylases.
    Helmreich EJ; Klein HW
    Angew Chem Int Ed Engl; 1980; 19(6):441-5. PubMed ID: 6773443
    [No Abstract]   [Full Text] [Related]  

  • 38. Pyridoxal 5'-phosphate binding in lysine-modified PAMAM dendrimers: a biomimetic approach.
    Hsien KC; Chen HT; Chen YC; Chen YL; Lu CY; Kao CL
    Org Lett; 2009 Aug; 11(16):3526-9. PubMed ID: 19621874
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Studies on the in vitro aging of transaminases in serum and tissue extract].
    Massarrat S
    Enzymol Biol Clin (Basel); 1965; 5(4):200-8. PubMed ID: 5864512
    [No Abstract]   [Full Text] [Related]  

  • 40. pH studies toward the elucidation of the auxiliary catalyst for pig heart aspartate aminotransferase.
    Kiick DM; Cook PF
    Biochemistry; 1983 Jan; 22(2):375-82. PubMed ID: 6402008
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.