These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
96 related articles for article (PubMed ID: 6425952)
1. [Possibilities for the use of cerium for the ultrahistochemical demonstration of enzymes]. Halbhuber KJ; Linss W Acta Histochem Suppl; 1984; 30():313-7. PubMed ID: 6425952 [TBL] [Abstract][Full Text] [Related]
2. Ultracytochemical localization of NAD(P)H oxidase activity in the human placenta. Matsubara S; Tamada T Nihon Sanka Fujinka Gakkai Zasshi; 1991 Jan; 43(1):117-21. PubMed ID: 1847711 [TBL] [Abstract][Full Text] [Related]
3. Pitfalls in the light microscopical detection of NADH oxidase. Gossrau R; Van Noorden CJ; Frederiks WM Histochem J; 1990 Mar; 22(3):155-61. PubMed ID: 2365589 [TBL] [Abstract][Full Text] [Related]
4. Light microscopical localization of enzymes by means of cerium-based methods. I.V. Optimization procedures for acid phosphatase. Halbhuber KJ; Zimmermann N; Feuerstein H Acta Histochem; 1986; 79(2):147-53. PubMed ID: 3092542 [TBL] [Abstract][Full Text] [Related]
5. Laser scanning microscopy in enzyme histochemistry. Visualization of cerium-based and dab-based primary reaction products of phosphatases, oxidases and peroxidases by reflectance and transmission laser scanning microscopy. Halbhuber KJ; Krieg R; König K Cell Mol Biol (Noisy-le-grand); 1998 Jul; 44(5):807-26. PubMed ID: 9764749 [TBL] [Abstract][Full Text] [Related]
6. Phosphatase cytochemistry with cerium as trapping agent. Verification of acid phosphatase and glucose-6-phosphatase reactive sites. Hoefsmit EC; Hulstaert CE; Kalicharan D; Eestermans IL Histochemistry; 1986; 84(4-6):329-32. PubMed ID: 3013807 [TBL] [Abstract][Full Text] [Related]
7. Demonstration of secondary lysosomes in bovine megakaryocytes and platelets using acid phosphatase cytochemistry with cerium as a trapping agent. Ménard M; Meyers KM; Prieur DJ Thromb Haemost; 1990 Feb; 63(1):127-32. PubMed ID: 2339349 [TBL] [Abstract][Full Text] [Related]
8. Light microscopical localization of enzymes by means of cerium-based methods. I. Detection of acid phosphatase by a new cerium-lead-technique (Ce-Pb-method). Zimmermann N; Halbhuber KJ Acta Histochem; 1985; 76(1):97-104. PubMed ID: 2409730 [TBL] [Abstract][Full Text] [Related]
9. Plasma membrane and phagosome localisation of the activated NADPH oxidase in elicited peritoneal macrophages of the guinea-pig. Berton G; Bellavite P; de Nicola G; Dri P; Rossi F J Pathol; 1982 Mar; 136(3):241-52. PubMed ID: 7069527 [TBL] [Abstract][Full Text] [Related]
10. [Detection of NADP(H)-oxidase activity in peritoneal macrophages during erythrophagocytosis]. Halbhuber KJ; Linss W Anat Anz; 1982; 152(5):467-9. PubMed ID: 7168497 [No Abstract] [Full Text] [Related]
11. Light microscopical localization of enzymes by means of cerium-based methods. II. A new cerium-lead-technique for alkaline phosphatase. Halbhuber KJ; Zimmermann N Acta Histochem; 1985; 77(1):67-73. PubMed ID: 3933256 [TBL] [Abstract][Full Text] [Related]
12. Freeze-fracture enzyme cytochemistry: application of enzyme cytochemistry to freeze-fracture cytochemistry. Takizawa T; Saito T J Electron Microsc (Tokyo); 1996 Jun; 45(3):242-6. PubMed ID: 8765719 [TBL] [Abstract][Full Text] [Related]
13. Cytochemical study of Streptococcus agalactiae and macrophage interaction. Teixeira CF; Azevedo NL; Carvalho TM; Fuentes J; Nagao PE Microsc Res Tech; 2001 Aug; 54(4):254-9. PubMed ID: 11514981 [TBL] [Abstract][Full Text] [Related]
14. Lysosomal origin of the chloragosomes in the chloragogenous tissue of the earthworm Eisenia foetida: cytochemical demonstration of acid phosphatase activity. Cancio I; ap Gwynn I; Ireland MP; Cajaraville MP Histochem J; 1995 Aug; 27(8):591-6. PubMed ID: 8550378 [TBL] [Abstract][Full Text] [Related]
15. Protein disulfide isomerase (PDI) associates with NADPH oxidase and is required for phagocytosis of Leishmania chagasi promastigotes by macrophages. Santos CX; Stolf BS; Takemoto PV; Amanso AM; Lopes LR; Souza EB; Goto H; Laurindo FR J Leukoc Biol; 2009 Oct; 86(4):989-98. PubMed ID: 19564574 [TBL] [Abstract][Full Text] [Related]
16. The enzyme responsible for the respiratory burst in elicited guinea pig peritoneal macrophages. Berton G; Bellavite P; Dri P; de Togni P; Rossi F J Pathol; 1982 Apr; 136(4):273-90. PubMed ID: 7077433 [No Abstract] [Full Text] [Related]
17. Activity profile of glutathione-dependent enzymes and respiratory chain complexes in rats supplemented with antioxidants and treated with carcinogens. Desai VG; Casciano D; Feuers RJ; Aidoo A Arch Biochem Biophys; 2001 Oct; 394(2):255-64. PubMed ID: 11594740 [TBL] [Abstract][Full Text] [Related]
18. Light microscopical detection of H2O2-generating oxidases using cerium ions and aqueous incubation media. Gossrau R; Frederiks WM; van Noorden CJ; Klebe S; Ruhnke M Acta Histochem; 1991; 90(1):27-37. PubMed ID: 1675541 [TBL] [Abstract][Full Text] [Related]
19. Light and electron microscopical demonstration of the ouabain-sensitive, potassium-dependent p-nitrophenylphosphatase activity (K-NPPase) using a Ce-Mg-double capture technique. Gliesing M; Kalicharan D; Halbhuber KJ Cell Mol Biol (Noisy-le-grand); 1995 Sep; 41(6):867-74. PubMed ID: 8535181 [TBL] [Abstract][Full Text] [Related]
20. The in vitro susceptibility of Fonsecaea pedrosoi to activated macrophages. Rozental S; Alviano CS; de Souza W Mycopathologia; 1994 May; 126(2):85-91. PubMed ID: 8065435 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]