BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 6426237)

  • 1. Acetaldehyde influences glucose 1,6-bisphosphate level of human erythrocytes in vitro and in vivo.
    Ninfali P; Accorsi A; Palma F; Fazi A; Piatti E; Fornaini G
    Acta Haematol; 1984; 71(4):241-6. PubMed ID: 6426237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Action of acetaldehyde on glucose metabolism of newborn and adult erythrocytes.
    Ninfali P; Palma F; Piacentini MP; Fornaini G
    Biol Neonate; 1987; 52(5):256-63. PubMed ID: 3676366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Degradative pathways of glucose 1,6-diphosphate in human erythrocytes].
    Ninfali P; Piatti E; Palma F; Chiarantini L; Piacentini MP
    Boll Soc Ital Biol Sper; 1984 Sep; 60(9):1667-9. PubMed ID: 6240986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Glucose 1,6-diphosphate in the erythrocytes of various species of mammal].
    Accorsi A; Fazi A; Chiarantini L; Piacentini MP; Malavolta M
    Boll Soc Ital Biol Sper; 1984 Sep; 60(9):1663-5. PubMed ID: 6240985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of pH-induced changes of the glycolysis of human erythrocytes.
    Rapoport I; Rapoport TA; Rapoport SM
    Acta Biol Med Ger; 1978; 37(3):393-401. PubMed ID: 32713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fructose 2,6-bisphosphate and glucose 1,6-bisphosphate levels in erythrocytes with high and low 2,3-bisphosphoglycerate content during postnatal development.
    Gallego C; Carreras J
    FEBS Lett; 1989 Jul; 251(1-2):74-8. PubMed ID: 2753166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 2,3-Bisphosphoglycerate, fructose, 2,6-bisphosphate and glucose 1,6-bisphosphate during maturation of reticulocytes with low 2,3-bisphosphoglycerate content.
    Gallego C; Carreras J
    Mol Cell Biochem; 1990 Dec; 99(1):21-4. PubMed ID: 2177836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glucose-1,6-P2 synthesis, phosphoglucomutase and phosphoribomutase correlate with glucose-1,6-P2 concentration in mammals red blood cells.
    Accorsi A; Fazi A; Ninfali P; Piatti E; Palma F; Piacentini MP; Fornaini G
    Comp Biochem Physiol B; 1985; 80(4):839-42. PubMed ID: 2986904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The relevance of glucose 1,6-bisphosphate formation and degradation to human red blood cell metabolism.
    Fornaini G; Bossù M; Fazi A; Piatti E; Ninfali P; Palma F; Piacentini MP; Accorsi A
    Ital J Biochem; 1986; 35(5):310-5. PubMed ID: 2948936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fructose 2,6-bisphosphate and glucose 1,6-bisphosphate in erythrocytes during chicken development.
    Espinet C; Bartrons R; Carreras J
    FEBS Lett; 1986 Dec; 209(2):254-6. PubMed ID: 3792546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glucose 1,6-bisphosphate-overloaded erythrocytes: a strategy to investigate the metabolic role of the bisphosphate in red blood cells.
    Piatti E; Accorsi A; Piacentini MP; Fazi A
    Arch Biochem Biophys; 1992 Feb; 293(1):117-21. PubMed ID: 1309980
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of erythrocyte glucose 1,6-bisphosphate--a comparison of two methods using a centrifugal analyzer.
    Thorburn DR; Kuchel PW
    Clin Chim Acta; 1987 Apr; 164(2):181-7. PubMed ID: 3594910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of ethanol ingestion on nucleotides and glycolytic intermediates in erythrocytes and purine bases in plasma and urine: acetaldehyde-induced erythrocyte purine degradation.
    Yamamoto T; Moriwaki Y; Takahashi S; Suda M; Higashino K
    Metabolism; 1993 Sep; 42(9):1212-6. PubMed ID: 8412778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated chromatographic analysis of acid-soluble red-cell phosphate compounds.
    Floridi A; Morelli A; Brunetti P
    J Lab Clin Med; 1971 Dec; 78(6):939-48. PubMed ID: 4331975
    [No Abstract]   [Full Text] [Related]  

  • 15. Fructose 2,6-bisphosphate and glucose 1,6-bisphosphate in avian and mammalian erythroid cells.
    Carreras J; Bartrons R; Espinet C; Gallego C
    Biomed Biochim Acta; 1987; 46(2-3):S258-62. PubMed ID: 2954546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Erythrocyte pyruvate kinase deficiency. The influence of physiologically important metabolites on the function of normal and defective enzymes.
    Lakomek M; Winkler H; Pekrun A; Krüger N; Sander M; Huppke P; Schröter W
    Enzyme Protein; 1994-1995; 48(3):149-63. PubMed ID: 8589802
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PH-dependent changes of 2,3-bisphosphoglycerate in human red cells during transitional and steady states in vitro.
    Rapoport I; Berger H; Elsner R; Rapoport S
    Eur J Biochem; 1977 Mar; 73(2):421-7. PubMed ID: 14829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fructose 2,6-bisphosphate and glucose 1,6-bisphosphate in rabbit erythroid cells during differentiation.
    Gallego C; Bartrons R; Carreras J
    FEBS Lett; 1987 Sep; 222(1):167-70. PubMed ID: 3653396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of ethanol and acetaldehyde load on erythrocyte deformability in healthy subjects and patients with liver cirrhosis.
    Shiraishi K; Tsuruya K; Anzai K; Arase Y; Hirose S; Kagawa T; Mine T; Matsuzaki S
    Nihon Arukoru Yakubutsu Igakkai Zasshi; 2015 Feb; 50(1):13-8. PubMed ID: 26027411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glucose 1,6-bisphosphate decline in human erythrocytes: possible involvement of phosphoglucomutase PGM2 isoenzymes.
    Ninfali P; Piatti E; Accorsi A; Palma F; Fazi A; Tozzi MG; Fornaini G
    Can J Biochem Cell Biol; 1985 Mar; 63(3):162-6. PubMed ID: 3157431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.