These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 6426780)
1. Activation of tumor-cytostatic macrophages with the antitumor agent 9,10-anthracenedicarboxaldehyde bis[(4,5-dihydro-1H-imidazole-2-yl)hydrazone] dihydrochloride (bisantrene). Wang BS; Lumanglas AL; Ruszala-Mallon VM; Durr FE Cancer Res; 1984 Jun; 44(6):2363-7. PubMed ID: 6426780 [TBL] [Abstract][Full Text] [Related]
2. Induction of tumor-inhibitory macrophages with a novel synthetic immunomodulator, 3,6-bis(2-piperidinoethoxy)acridine trihydrochloride (CL 246,738). Wang BS; Lumanglas AL; Ruszala-Mallon VM; Durr FE J Immunol; 1985 Jul; 135(1):679-83. PubMed ID: 3839006 [TBL] [Abstract][Full Text] [Related]
3. Immunotherapy of a murine lymphoma by adoptive transfer of syngeneic macrophages activated with bisantrene. Wang BS; Lumanglas AL; Durr FE Cancer Res; 1986 Feb; 46(2):503-6. PubMed ID: 3940628 [TBL] [Abstract][Full Text] [Related]
4. Studies on macrophage-activating factor (MAF) in antitumor immune responses. I. Tumor-specific Lyt-1+2- T cells are required for producing MAF able to generate cytolytic as well as cytostatic macrophages. Nakajima H; Fujiwara H; Takai Y; Izumi Y; Sano S; Tsuchida T; Hamaoka T J Immunol; 1985 Sep; 135(3):2199-205. PubMed ID: 3894520 [TBL] [Abstract][Full Text] [Related]
5. Modulation of immune effector cell cytolytic activity and tumour growth inhibition in vivo by Ukrain (NSC 631570). Liepins A; Nowicky JW Drugs Exp Clin Res; 1996; 22(3-5):103-13. PubMed ID: 8899312 [TBL] [Abstract][Full Text] [Related]
6. Phase I clinical investigation of 9,10-anthracenedicarboxaldehyde bis[(4,5-dihydro-1H-imidazol-2-yl)hydrazone] dihydrochloride with correlative in vitro human tumor clonogenic assay. Alberts DS; Mackel C; Pocelinko R; Salmon SE Cancer Res; 1982 Mar; 42(3):1170-5. PubMed ID: 7037174 [TBL] [Abstract][Full Text] [Related]
7. Antitumor activity and hydrogen peroxide release by macrophages elicited by trehalose diesters. Lepoivre M; Tenu JP; Lemaire G; Petit JF J Immunol; 1982 Aug; 129(2):860-6. PubMed ID: 6806386 [TBL] [Abstract][Full Text] [Related]
8. Retroviral transfer of the human MDR1 gene confers resistance to bisantrene-specific hematotoxicity. Aksentijevich I; Cardarelli CO; Pastan I; Gottesman MM Clin Cancer Res; 1996 Jun; 2(6):973-80. PubMed ID: 9816258 [TBL] [Abstract][Full Text] [Related]
9. Activity of a novel anthracenyl bishydrazone, 9,10-anthracenedicarboxyaldehyde Bis[(4,5-dihydro-1H-imidazol-2-yl)hydrazone] dihydrochloride, against experimental tumors in mice. Citarella RV; Wallace RE; Murdock KC; Angier RB; Durr FE; Forbes M Cancer Res; 1982 Feb; 42(2):440-4. PubMed ID: 7055799 [TBL] [Abstract][Full Text] [Related]
10. [Induction of the tumoricidal activity of human and murine peritoneal macrophages under the action of antitumor chemical preparations]. Potapov SL; Viadro MM Biull Eksp Biol Med; 1989 Sep; 108(9):330-2. PubMed ID: 2611394 [TBL] [Abstract][Full Text] [Related]
11. Ability of the immunomodulating dipeptide bestatin to activate cytotoxic mononuclear phagocytes. Schorlemmer HU; Bosslet K; Sedlacek HH Cancer Res; 1983 Sep; 43(9):4148-53. PubMed ID: 6871856 [TBL] [Abstract][Full Text] [Related]
12. Light, fluorescent, and electron microscopic analysis of cultured breast tumor cells (T-47D) treated with 9,10-anthracenedicarboxaldehyde bis[(4,5-dihydro-1H-imidazol-2-yl)hydrazone] dihydrochloride. Tseng MT; Safa AR Cancer Res; 1983 Dec; 43(12 Pt 1):5910-4. PubMed ID: 6640539 [TBL] [Abstract][Full Text] [Related]
13. Tumor growth inhibitory and natural suppressor activities of murine bone marrow cells: a comparative study. Seledtsov VI; Taraban VY; Seledtsova GV; Samarin DM; Avdeev IV; Senyukov VV; Kozlov VA Cell Immunol; 1997 Nov; 182(1):12-9. PubMed ID: 9427805 [TBL] [Abstract][Full Text] [Related]
14. [Anticancer effects of OK-432 (2). Anticancer actions of M phi activated by OK-432]. Saito M; Aonuma E; Noda T; Nakadate I; Nanjo M; Ebina T; Ishida N Gan To Kagaku Ryoho; 1983 May; 10(5):1363-71. PubMed ID: 6870302 [TBL] [Abstract][Full Text] [Related]
15. Newcastle disease virus activates macrophages for anti-tumor activity. Schirrmacher V; Bai L; Umansky V; Yu L; Xing Y; Qian Z Int J Oncol; 2000 Feb; 16(2):363-73. PubMed ID: 10639582 [TBL] [Abstract][Full Text] [Related]
16. Cytokinetics of macrophage-mediated cytotoxicity. Normann SJ; Cornelius J Cancer Res; 1984 Jun; 44(6):2313-9. PubMed ID: 6426778 [TBL] [Abstract][Full Text] [Related]
17. Effect of peritoneal cells on tumors cells growth in vitro. Salwa J Arch Immunol Ther Exp (Warsz); 1995; 43(1):37-41. PubMed ID: 8744682 [TBL] [Abstract][Full Text] [Related]
18. Macrophages as effector cells in interleukin 12-induced T cell-dependent tumor rejection. Tsung K; Dolan JP; Tsung YL; Norton JA Cancer Res; 2002 Sep; 62(17):5069-75. PubMed ID: 12208763 [TBL] [Abstract][Full Text] [Related]
19. Induction of soluble antitumoral mediators by synthetic analogues of bacterial lipoprotein in bone marrow-derived macrophages from LPS-responder and -nonresponder mice. Pfannes SD; Müller B; Körner S; Bessler WG; Hoffmann P J Leukoc Biol; 2001 Apr; 69(4):590-7. PubMed ID: 11310845 [TBL] [Abstract][Full Text] [Related]
20. The capacity of activated murine macrophages for augmented binding of neoplastic cells: analysis of induction by lymphokine containing MAF and kinetics of the reaction. Marino PA; Adams DO J Immunol; 1982 Jun; 128(6):2816-23. PubMed ID: 6804569 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]