These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
87 related articles for article (PubMed ID: 6427030)
1. Structure of bacteriophage phi 29 DNA. Escarmís C; Sogo JM; García JA; Salas M Folia Biol (Praha); 1984; 30 Spec No():45-51. PubMed ID: 6427030 [No Abstract] [Full Text] [Related]
2. Transcription of cloned DNA from Bacillus subtilis phage SP01. Requirement for hydroxymethyluracil-containing DNA by phage-modified RNA polymerase. Lee G; Hannett NM; Korman A; Pero J J Mol Biol; 1980 May; 139(3):407-22. PubMed ID: 6449597 [No Abstract] [Full Text] [Related]
3. Conserved nucleotide sequences in temporally controlled bacteriophage promoters. Lee G; Pero J J Mol Biol; 1981 Oct; 152(2):247-65. PubMed ID: 6276567 [No Abstract] [Full Text] [Related]
4. [Transcription antitermination in bacteria and bacteriophages]. Wolska KI Postepy Biochem; 1998; 44(1):32-9. PubMed ID: 9738235 [No Abstract] [Full Text] [Related]
5. In vitro transcription of bacteriophage phi 29 DNA. Correlation between in vitro and in vivo promoters. Mellado RP; Barthelemy I; Salas M Nucleic Acids Res; 1986 Jun; 14(12):4731-41. PubMed ID: 3088543 [TBL] [Abstract][Full Text] [Related]
6. Bacteriophages: how bacterial spores capture and protect phage DNA. Sonenshein AL Curr Biol; 2006 Jan; 16(1):R14-6. PubMed ID: 16401409 [TBL] [Abstract][Full Text] [Related]
7. Transcription of the Bacillus subtilis bacteriophage phi 3T in vitro. Kenny E; Atkinson T; Hartley BS J Gen Virol; 1985 Sep; 66 ( Pt 9)():2029-32. PubMed ID: 2993487 [TBL] [Abstract][Full Text] [Related]
8. Symmetrical transcription in bacteriophage phi 29 DNA. Barthelemy I; Mellado RP; Salas M Biochimie; 1988 May; 70(5):605-9. PubMed ID: 3139079 [TBL] [Abstract][Full Text] [Related]
9. Modulation of in vivo and in vitro transcription of bacteriophage phi 29 early genes. Whiteley HR; Ramey WD; Spiegelman GB; Holder RD Virology; 1986 Dec; 155(2):392-401. PubMed ID: 3097957 [TBL] [Abstract][Full Text] [Related]
10. Bacteriophage SP82 induced modifications of Bacillus subtilis RNA polymerase result in the recognition of additional RNA synthesis initiation sites on phage DNA. Spiegelman GB; Whiteley HR Biochem Biophys Res Commun; 1978 Apr; 81(3):1058-65. PubMed ID: 96824 [No Abstract] [Full Text] [Related]
11. Nucleotide sequence and transcription of the left early region of Streptococcus pneumoniae bacteriophage Cp-1 coding for the terminal protein and the DNA polymerase. Martín AC; López R; García P Virology; 1995 Aug; 211(1):21-32. PubMed ID: 7645213 [TBL] [Abstract][Full Text] [Related]
12. Interaction of escherichia coli RNA polymerase with the genome of Proteus mirabilis phage 5006M. Coetzee WF; Pretorius GH Virology; 1982 Feb; 117(1):11-8. PubMed ID: 7039087 [No Abstract] [Full Text] [Related]
13. Restriction fragment analysis of the temporal program of bacteriophage SPO1 transcription and its control by phage-modified RNA polymerases. Talkington C; Pero J Virology; 1977 Dec; 83(2):365-79. PubMed ID: 412317 [No Abstract] [Full Text] [Related]
14. The delta subunit of Bacillus subtilis RNA polymerase. An allosteric effector of the initiation and core-recycling phases of transcription. Juang YL; Helmann JD J Mol Biol; 1994 May; 239(1):1-14. PubMed ID: 7515111 [TBL] [Abstract][Full Text] [Related]
15. Promoter sites in the genome of B. subtilis phage SPP1. Stüber D; Morelli G; Bujard H; Montenegro MA; Trautner TA Mol Gen Genet; 1981; 181(4):518-21. PubMed ID: 6790908 [TBL] [Abstract][Full Text] [Related]
16. In vitro synthesis of late bacteriophage phi 29 RNA. Holder RD; Whiteley HR J Virol; 1983 Jun; 46(3):690-702. PubMed ID: 6406684 [TBL] [Abstract][Full Text] [Related]
17. Structure and function of the bacteriophage T7 RNA polymerase (or, the virtues of simplicity). McAllister WT Cell Mol Biol Res; 1993; 39(4):385-91. PubMed ID: 8312975 [TBL] [Abstract][Full Text] [Related]
19. Identification of the sequences recognized by phage phi 29 transcriptional activator: possible interaction between the activator and the RNA polymerase. Nuez B; Rojo F; Barthelemy I; Salas M Nucleic Acids Res; 1991 May; 19(9):2337-42. PubMed ID: 1904153 [TBL] [Abstract][Full Text] [Related]
20. Effects of the transciption inhibitory protein, TF1, on phage SP01 promoter complex formation and stability. Geiduschek EP; Armelin MC; Petrusek R; Bread C; Duffy JJ; Johnson G J Mol Biol; 1977 Dec; 117(4):825-42. PubMed ID: 415142 [No Abstract] [Full Text] [Related] [Next] [New Search]