These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 6427185)

  • 21. Characterization of an acetate-decarboxylating, non-hydrogen-oxidizing methane bacterium.
    Zehnder AJ; Huser BA; Brock TD; Wuhrmann K
    Arch Microbiol; 1980 Jan; 124(1):1-11. PubMed ID: 6769415
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The sodium cycle in methanogenesis. CO2 reduction to the formaldehyde level in methanogenic bacteria is driven by a primary electrochemical potential of Na+ generated by formaldehyde reduction to CH4.
    Kaesler B; Schönheit P
    Eur J Biochem; 1989 Dec; 186(1-2):309-16. PubMed ID: 2557210
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Physiological importance of the heterodisulfide of coenzyme M and 7-mercaptoheptanoylthreonine phosphate in the reduction of carbon dioxide to methane in Methanobacterium.
    Bobik TA; Wolfe RS
    Proc Natl Acad Sci U S A; 1988 Jan; 85(1):60-3. PubMed ID: 3124103
    [TBL] [Abstract][Full Text] [Related]  

  • 24. On the role of N-7-mercaptoheptanoyl-O-phospho-L-threonine (component B) in the enzymatic reduction of methyl-coenzyme M to methane.
    Ellermann J; Kobelt A; Pfaltz A; Thauer RK
    FEBS Lett; 1987 Aug; 220(2):358-62. PubMed ID: 3111890
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Source of carbon and hydrogen in methane produced from formate by Methanococcus thermolithotrophicus.
    Sparling R; Daniels L
    J Bacteriol; 1986 Dec; 168(3):1402-7. PubMed ID: 3782041
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stimulation of the methylcoenzyme M reduction by uridine-5'-diphospho-sugars in cell-free extracts of Methanobacterium thermoautotrophicum (strain delta H).
    Keltjens JT; Kraft HJ; Damen WG; van der Drift C; Vogels GD
    Eur J Biochem; 1989 Sep; 184(2):395-403. PubMed ID: 2507320
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Oxidation of hydrogen and reduction of methanol to methane is the sole energy source for a methanogen isolated from human feces.
    Miller TL; Wolin MJ
    J Bacteriol; 1983 Feb; 153(2):1051-5. PubMed ID: 6822473
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In vitro methane and methyl coenzyme M formation from acetate: evidence that acetyl-CoA is the required intermediate activated form of acetate.
    Grahame DA; Stadtman TC
    Biochem Biophys Res Commun; 1987 Aug; 147(1):254-8. PubMed ID: 3115259
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Methanogenesis and ATP synthesis in methanogenic bacteria at low electrochemical proton potentials. An explanation for the apparent uncoupler insensitivity of ATP synthesis.
    Kaesler B; Schönheit P
    Eur J Biochem; 1988 May; 174(1):189-97. PubMed ID: 2897291
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tetrahydromethanopterin methyltransferase, a component of the methane synthesizing complex of Methanobacterium thermoautotrophicum.
    Sauer FD
    Biochem Biophys Res Commun; 1986 Apr; 136(2):542-7. PubMed ID: 3085670
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Trace methane oxidation studied in several Euryarchaeota under diverse conditions.
    Moran JJ; House CH; Freeman KH; Ferry JG
    Archaea; 2005 May; 1(5):303-9. PubMed ID: 15876563
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Activation of formylmethanofuran synthesis in cell extracts of Methanobacterium thermoautotrophicum.
    Bobik TA; Wolfe RS
    J Bacteriol; 1989 Mar; 171(3):1423-7. PubMed ID: 2921239
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Formate auxotroph of Methanobacterium thermoautotrophicum Marburg.
    Tanner RS; McInerney MJ; Nagle DP
    J Bacteriol; 1989 Dec; 171(12):6534-8. PubMed ID: 2687241
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transport of coenzyme M (2-mercaptoethanesulfonic acid) in Methanobacterium ruminantium.
    Balch WE; Wolfe RS
    J Bacteriol; 1979 Jan; 137(1):264-73. PubMed ID: 33148
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stimulation of CO2 reduction to methane by methylcoenzyme M in extracts Methanobacterium.
    Gunsalus RP; Wolfe RS
    Biochem Biophys Res Commun; 1977 Jun; 76(3):790-5. PubMed ID: 409394
    [No Abstract]   [Full Text] [Related]  

  • 36. Methyl-coenzyme M, an intermediate in methanogenic dissimilation of C1 compounds by Methanosarcina barkeri.
    Shapiro S; Wolfe RS
    J Bacteriol; 1980 Feb; 141(2):728-34. PubMed ID: 6444945
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Methane formation from methyl-coenzyme M in a system containing methyl-coenzyme M reductase, component B and reduced cobalamin.
    Ankel-Fuchs D; Thauer RK
    Eur J Biochem; 1986 Apr; 156(1):171-7. PubMed ID: 3082633
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Origin of hydrogen in methane produced by Methanobacterium thermoautotrophicum.
    Daniels L; Fulton G; Spencer RW; Orme-Johnson WH
    J Bacteriol; 1980 Feb; 141(2):694-8. PubMed ID: 7364716
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Carbon dioxide reduction factor and methanopterin, two coenzymes required for CO2 reduction to methane by extracts of Methanobacterium.
    Leigh JA; Wolfe RS
    J Biol Chem; 1983 Jun; 258(12):7536-40. PubMed ID: 6408076
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Methyl coenzyme M reductase from Methanobacterium thermoautotrophicum. Resolution and properties of the components.
    Gunsalus RP; Wolfe RS
    J Biol Chem; 1980 Mar; 255(5):1891-5. PubMed ID: 6766457
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.