These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 6427186)

  • 1. Degradation of aspartate transcarbamylase in Bacillus subtilis is deficient in rel mutants but is not mediated by guanosine polyphosphates.
    Bond RW; Switzer RL
    J Bacteriol; 1984 May; 158(2):746-8. PubMed ID: 6427186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new relaxed mutant of Bacillus subtilis.
    Price VL; Gallant JA
    J Bacteriol; 1982 Feb; 149(2):635-41. PubMed ID: 6173376
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of extracellular alpha-amylase by Bacillus subtilis in relation to guanosine polyphosphates.
    Wambutt R; Riesenberg D; Krüger M; Schultze M
    Z Allg Mikrobiol; 1984; 24(8):575-9. PubMed ID: 6438928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Involvement of the stringent response in degradation of glutamine phosphoribosylpyrophosphate amidotransferase in Bacillus subtilis.
    Ruppen ME; Switzer RL
    J Bacteriol; 1983 Jul; 155(1):56-63. PubMed ID: 6408067
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies on the control of development. Synthesis of two highly phosphorylated nucleotides depends on changes in the composition of ribosomes at the beginning of sporulation in Bacillus subtilis.
    Rhaese HJ; Groscurth R
    Eur J Biochem; 1978 Apr; 85(2):517-28. PubMed ID: 417920
    [No Abstract]   [Full Text] [Related]  

  • 6. Aspartate transcarbamylase synthesis ceases prior to inactivation of the enzyme in Bacillus subtilis.
    Maurizi MR; Switzer RL
    J Bacteriol; 1978 Sep; 135(3):943-51. PubMed ID: 99440
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptional inhibition and production of guanosine polyphosphates in Bacillus subtilis.
    Price VL; Brown LR
    J Bacteriol; 1981 Sep; 147(3):752-6. PubMed ID: 6792187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence that Bacillus subtilis sporulation induced by the stringent response is caused by the decrease in GTP or GDP.
    Ochi K; Kandala J; Freese E
    J Bacteriol; 1982 Aug; 151(2):1062-5. PubMed ID: 6807955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Role of spot gene product in the degradation of pppGpp in bacteria].
    Belitskiĭ BR; Shakulov RS
    Mol Biol (Mosk); 1982; 16(4):857-64. PubMed ID: 6811860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accumulation of relA gene-independent ppGpp in Bacillus subtilis vegetative cells upon temperature shift-down.
    Ikehara K; Okada H; Maeda K; Ogura A; Sugae K
    J Biochem; 1984 Mar; 95(3):895-7. PubMed ID: 6427205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Guanosine polyphosphate concentration and stable RNA synthesis in Bacillus subtilis following suppression of protein synthesis].
    Belitskiĭ BR; Shakulov RS
    Mol Biol (Mosk); 1980; 14(6):1342-53. PubMed ID: 6160384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accumulation of guanosine tetraphosphate and guanosine pentaphosphate in Myxococcus xanthus during starvation and myxospore formation.
    Manoil C; Kaiser D
    J Bacteriol; 1980 Jan; 141(1):297-304. PubMed ID: 6766441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation of a pyrophosphorylase from Bacillus subtilis and Bacillus stearothermophilus that specifically degrades guanosine 3'-diphosphate 5'-diphosphate.
    Richter D; Geis M
    FEBS Lett; 1978 Dec; 96(2):247-51. PubMed ID: 103752
    [No Abstract]   [Full Text] [Related]  

  • 14. Accumulation of ppGpp and pppGpp during nitrogen deprivation of the cyanophyte Anabaena cylindrica.
    Akinyanju J; Smith RJ
    FEBS Lett; 1979 Nov; 107(1):173-6. PubMed ID: 115718
    [No Abstract]   [Full Text] [Related]  

  • 15. Regulatory nucleotides involved in the Rel function of Bacillus subtilis.
    Nishino T; Gallant J; Shalit P; Palmer L; Wehr T
    J Bacteriol; 1979 Nov; 140(2):671-9. PubMed ID: 115847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The presence and absence of magic spot nucleotide modulation in cyanobacteria undergoing nutritional shift-down.
    Adams DG; Phillips DO; Nichols JM; Carr NG
    FEBS Lett; 1977 Sep; 81(1):48-52. PubMed ID: 409622
    [No Abstract]   [Full Text] [Related]  

  • 17. Characterization of the guanosine 5'-triphosphate 3'-diphosphate and guanosine 5'-diphosphate 3'-diphosphate degradation reaction catalyzed by a specific pyrophosphorylase from Escherichia coli.
    Heinemeyer EA; Richter D
    Biochemistry; 1978 Dec; 17(25):5368-72. PubMed ID: 365225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High temperature induction of a stringent response in the dnaK(Ts) and dnaJ(Ts) mutants of Escherichia coli.
    Itikawa H; Fujita H; Wada M
    J Biochem; 1986 Jun; 99(6):1719-24. PubMed ID: 2427506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The guanosine 3',5'-bis(diphosphate) (ppGpp) cycle. Comparison of synthesis and degradation of guanosine 3',5'-bis(diphosphate) in various bacterial systems.
    Richter D; Fehr S; Harder R
    Eur J Biochem; 1979 Aug; 99(1):57-64. PubMed ID: 114395
    [No Abstract]   [Full Text] [Related]  

  • 20. The stringent response to unacylated tRNA, energy-and temperature-downshift in Bacillus stearothermophilus.
    Fehr S; Richter D
    Arch Microbiol; 1981 Mar; 129(1):29-31. PubMed ID: 6164348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.