These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 6428481)

  • 1. Biological functions of low-frequency vibrations (phonons). III. Helical structures and microenvironment.
    Chou KC
    Biophys J; 1984 May; 45(5):881-9. PubMed ID: 6428481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low-frequency vibrations of helical structures in protein molecules.
    Chou KC
    Biochem J; 1983 Mar; 209(3):573-80. PubMed ID: 6870784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-frequency motions in protein molecules. Beta-sheet and beta-barrel.
    Chou KC
    Biophys J; 1985 Aug; 48(2):289-97. PubMed ID: 4052563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The biological functions of low-frequency vibrations (phonons) 5. A phenomenological theory.
    Chou KC; Kiang YS
    Biophys Chem; 1985 Aug; 22(3):219-35. PubMed ID: 4052576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Origin of low-frequency motions in biological macromolecules. A view of recent progress in the quasi-continuity model.
    Chou KC
    Biophys Chem; 1986 Dec; 25(2):105-16. PubMed ID: 3101760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The biological functions of low-frequency vibrations (phonons). 4. Resonance effects and allosteric transition.
    Chou KC
    Biophys Chem; 1984 Aug; 20(1-2):61-71. PubMed ID: 6487745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The biological functions of low-frequency vibrations (phonons). VI. A possible dynamic mechanism of allosteric transition in antibody molecules.
    Chou KC
    Biopolymers; 1987 Feb; 26(2):285-95. PubMed ID: 3828475
    [No Abstract]   [Full Text] [Related]  

  • 8. Conformationally dependent low-frequency motions of proteins by laser Raman spectroscopy.
    Brown KG; Erfurth SC; Small EW; Peticolas WL
    Proc Natl Acad Sci U S A; 1972 Jun; 69(6):1467-9. PubMed ID: 4504361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deoxymyoglobin studied by the conformational normal mode analysis. II. The conformational change upon oxygenation.
    Seno Y; Go N
    J Mol Biol; 1990 Nov; 216(1):111-26. PubMed ID: 2231726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-vibron bound states in alpha-helix proteins: the interplay between the intramolecular anharmonicity and the strong vibron-phonon coupling.
    Pouthier V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 1):021909. PubMed ID: 14525008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intramolecular vibrations in low-frequency normal modes of amino acids: L-alanine in the neat solid state.
    Zhang F; Wang HW; Tominaga K; Hayashi M
    J Phys Chem A; 2015 Mar; 119(12):3008-22. PubMed ID: 25723274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The properties of bio-energy transport and influence of structure nonuniformity and temperature of systems on energy transport along polypeptide chains.
    Pang XF
    Prog Biophys Mol Biol; 2012 Jan; 108(1-2):1-46. PubMed ID: 21951575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Folding funnels and conformational transitions via hinge-bending motions.
    Kumar S; Ma B; Tsai CJ; Wolfson H; Nussinov R
    Cell Biochem Biophys; 1999; 31(2):141-64. PubMed ID: 10593256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Separation of time scale and coupling in the motion governed by the coarse-grained and fine degrees of freedom in a polypeptide backbone.
    Murarka RK; Liwo A; Scheraga HA
    J Chem Phys; 2007 Oct; 127(15):155103. PubMed ID: 17949219
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Picosecond timescale rigid-helix and side-chain motions in deoxymyoglobin.
    Furois-Corbin S; Smith JC; Kneller GR
    Proteins; 1993 Jun; 16(2):141-54. PubMed ID: 8332605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the stability of looped-out and stacked-in conformations of an adenine bulge in DNA using a continuum model for solvent and ions.
    Zacharias M; Sklenar H
    Biophys J; 1997 Dec; 73(6):2990-3003. PubMed ID: 9414214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Breathing mode of conformational fluctuations in globular proteins.
    Suezaki Y; Go N
    Int J Pept Protein Res; 1975; 7(4):333-4. PubMed ID: 1184283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The structure of the transition state for folding of chymotrypsin inhibitor 2 analysed by protein engineering methods: evidence for a nucleation-condensation mechanism for protein folding.
    Itzhaki LS; Otzen DE; Fersht AR
    J Mol Biol; 1995 Nov; 254(2):260-88. PubMed ID: 7490748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phonon dynamics and electron-phonon coupling in pristine picene.
    Girlando A; Masino M; Bilotti I; Brillante A; Della Valle RG; Venuti E
    Phys Chem Chem Phys; 2012 Feb; 14(5):1694-9. PubMed ID: 22193510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-frequency vibrations in alpha-helices: helicoidal analysis of polyalanine and deoxymyoglobin molecular dynamics trajectories.
    Furois-Corbin S; Smith JC; Lavery R
    Biopolymers; 1995 Jun; 35(6):555-71. PubMed ID: 7766822
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.