These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 6428481)

  • 21. Low-frequency vibrations of DNA molecules.
    Chou KC
    Biochem J; 1984 Jul; 221(1):27-31. PubMed ID: 6466317
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Protein promiscuity: drug resistance and native functions--HIV-1 case.
    Fernández A; Tawfik DS; Berkhout B; Sanders R; Kloczkowski A; Sen T; Jernigan B
    J Biomol Struct Dyn; 2005 Jun; 22(6):615-24. PubMed ID: 15842167
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Theory of low-frequency vibrations in DNA macromolecules.
    Volkov SN; Kosevich AM
    J Biomol Struct Dyn; 1991 Apr; 8(5):1069-83. PubMed ID: 1878165
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Triplet and fluorescing states of the CP47 antenna complex of photosystem II studied as a function of temperature.
    Groot ML; Peterman EJ; van Stokkum IH; Dekker JP; van Grondelle R
    Biophys J; 1995 Jan; 68(1):281-90. PubMed ID: 7711252
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Energy-minimized conformation of gramicidin-like channels. II. Periodicity of the lowest energy conformation of an infinitely long poly-(L,D)-alanine beta 6.3-helix.
    Monoi H
    Biophys J; 1993 Nov; 65(5):1828-36. PubMed ID: 7507715
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Normal modes of vibration in bovine pancreatic trypsin inhibitor and its mechanical property.
    Nishikawa T; Go N
    Proteins; 1987; 2(4):308-29. PubMed ID: 3448606
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Approximate values for force constant and wave number associated with a low-frequency concerted motion in proteins can be evaluated by a comparison of X-ray structures.
    Merlino A; Sica F; Mazzarella L
    J Phys Chem B; 2007 May; 111(19):5483-6. PubMed ID: 17429995
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Contribution of energy values to the analysis of global searching molecular dynamics simulations of transmembrane helical bundles.
    Torres J; Briggs JA; Arkin IT
    Biophys J; 2002 Jun; 82(6):3063-71. PubMed ID: 12023229
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Conformational isomerization and collisional cooling dynamics of bis(2-hydroxyphenyl)methane.
    Pillsbury NR; Müller CW; Zwier TS
    J Phys Chem A; 2009 Apr; 113(17):5013-21. PubMed ID: 19348453
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Affinity and specificity of serine endopeptidase-protein inhibitor interactions. Empirical free energy calculations based on X-ray crystallographic structures.
    Krystek S; Stouch T; Novotny J
    J Mol Biol; 1993 Dec; 234(3):661-79. PubMed ID: 8254666
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Statistical mechanics of protein folding, unfolding and fluctuation.
    Gło N
    Adv Biophys; 1976; ():65-113. PubMed ID: 1015397
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Single-conformation ultraviolet and infrared spectroscopy of model synthetic foldamers: beta-peptides Ac-beta3-hPhe-beta3-hAla-NHMe and Ac-beta3-hAla-beta3-hPhe-NHMe.
    Baquero EE; James WH; Choi SH; Gellman SH; Zwier TS
    J Am Chem Soc; 2008 Apr; 130(14):4795-807. PubMed ID: 18345673
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lattice vibrations in crystalline L-alanine.
    Durand D; Field MJ; Quilichini M; Smith JC
    Biopolymers; 1993 May; 33(5):725-33. PubMed ID: 8343574
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thermodynamics of melittin binding to lipid bilayers. Aggregation and pore formation.
    Klocek G; Schulthess T; Shai Y; Seelig J
    Biochemistry; 2009 Mar; 48(12):2586-96. PubMed ID: 19173655
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Intramolecular vibrations and noise effects on pattern formation in a molecular helix.
    Fouda HP; Tabi CB; Mohamadou A; Kofané TC
    J Phys Condens Matter; 2011 Sep; 23(37):375104. PubMed ID: 21878712
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Folding with downhill behavior and low cooperativity of proteins.
    Zuo G; Wang J; Wang W
    Proteins; 2006 Apr; 63(1):165-73. PubMed ID: 16416404
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural rearrangements in water viewed through two-dimensional infrared spectroscopy.
    Roberts ST; Ramasesha K; Tokmakoff A
    Acc Chem Res; 2009 Sep; 42(9):1239-49. PubMed ID: 19585982
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of water on unfolding kinetics of helical peptides studied by molecular dynamics simulations.
    Doruker P; Bahar I
    Biophys J; 1997 Jun; 72(6):2445-56. PubMed ID: 9168021
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The nature of phonons and solitary waves in alpha-helical proteins.
    Lawrence AF; McDaniel JC; Chang DB; Birge RR
    Biophys J; 1987 May; 51(5):785-93. PubMed ID: 3593874
    [TBL] [Abstract][Full Text] [Related]  

  • 40. One role of hydration water in proteins: key to the "softening" of short time intraprotein collective vibrations of a specific length scale.
    Wang Z; Chiang WS; Le P; Fratini E; Li M; Alatas A; Baglioni P; Chen SH
    Soft Matter; 2014 Jun; 10(24):4298-303. PubMed ID: 24789017
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.