These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 6429073)

  • 1. Isolation and characterization of monodeamidated derivatives of bovine pancreatic ribonuclease A.
    Venkatesh YP; Vithayathil PJ
    Int J Pept Protein Res; 1984 May; 23(5):494-505. PubMed ID: 6429073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of deamidation(s) in the 67-74 region of ribonuclease on its refolding.
    Venkatesh YP; Vithayathil PJ
    Int J Pept Protein Res; 1985 Jan; 25(1):27-32. PubMed ID: 3980147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deamidated active intermediates in the irreversible acid denaturation of ribonuclease-A.
    Manjula BN; Acharya AS; Vithayathil PJ
    Int J Pept Protein Res; 1976; 8(3):275-82. PubMed ID: 6396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purification and characterization of human pancreatic ribonuclease.
    Weickmann JL; Elson M; Glitz DG
    Biochemistry; 1981 Mar; 20(5):1272-8. PubMed ID: 6784751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of the structure of ribonuclease A in native and partially denatured states by time-resolved noradiative dynamic excitation energy transfer between site-specific extrinsic probes.
    Buckler DR; Haas E; Scheraga HA
    Biochemistry; 1995 Dec; 34(49):15965-78. PubMed ID: 8519753
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective deamidation of ribonuclease A. Isolation and characterization of the resulting isoaspartyl and aspartyl derivatives.
    Di Donato A; Ciardiello MA; de Nigris M; Piccoli R; Mazzarella L; D'Alessio G
    J Biol Chem; 1993 Mar; 268(7):4745-51. PubMed ID: 8444851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of a ribonuclease from bovine brain.
    Elson M; Glitz DG
    Biochemistry; 1975 Apr; 14(7):1471-6. PubMed ID: 235953
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of protein conformation on rate of deamidation: ribonuclease A.
    Wearne SJ; Creighton TE
    Proteins; 1989; 5(1):8-12. PubMed ID: 2748573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new approach to obtaining high-activity RNase, DNase, cholesterolesterase, and trypsin from cattle pancreas.
    Khomov VV; Bochkov DV; Tolstikova TG
    Dokl Biochem Biophys; 2005; 400():61-4. PubMed ID: 15846986
    [No Abstract]   [Full Text] [Related]  

  • 10. Comparison of local and global stability of an analogue of a disulfide-folding intermediate with those of the wild-type protein in bovine pancreatic ribonuclease A: identification of specific regions of stable structure along the oxidative folding pathway.
    Laity JH; Montelione GT; Scheraga HA
    Biochemistry; 1999 Dec; 38(50):16432-42. PubMed ID: 10600104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Irreversible thermal denaturation of bovine pancreatic ribonuclease-A. Physico-chemical characterization of initial products.
    Ramnath S; Vithayathil PJ
    Int J Pept Protein Res; 1981 Jan; 17(1):107-17. PubMed ID: 6262254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of an RNase A derivative containing an aminosuccinyl residue in place of asparagine 67.
    Capasso S; Di Cerbo P
    Biopolymers; 2000-2001; 56(1):14-9. PubMed ID: 11582573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of size and location of the oligosaccharide chain on protease degradation of bovine pancreatic ribonuclease.
    Bernard BA; Newton SA; Olden K
    J Biol Chem; 1983 Oct; 258(20):12198-202. PubMed ID: 6630185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NMR structural analysis of an analog of an intermediate formed in the rate-determining step of one pathway in the oxidative folding of bovine pancreatic ribonuclease A: automated analysis of 1H, 13C, and 15N resonance assignments for wild-type and [C65S, C72S] mutant forms.
    Shimotakahara S; Rios CB; Laity JH; Zimmerman DE; Scheraga HA; Montelione GT
    Biochemistry; 1997 Jun; 36(23):6915-29. PubMed ID: 9188686
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonenzymic reactivation of reduced bovine pancreatic ribonuclease by air oxidation and by glutathione oxidoreduction buffers.
    Ahmed AK; Schaffer SW; Wetlaufer DB
    J Biol Chem; 1975 Nov; 250(21):8477-82. PubMed ID: 1194263
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Refinement of the crystal structure of ribonuclease S. Comparison with and between the various ribonuclease A structures.
    Kim EE; Varadarajan R; Wyckoff HW; Richards FM
    Biochemistry; 1992 Dec; 31(49):12304-14. PubMed ID: 1463719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Limited proteolysis of ribonuclease A with thermolysin in trifluoroethanol.
    Polverino de Laureto P; Scaramella E; De Filippis V; Bruix M; Rico M; Fontana A
    Protein Sci; 1997 Apr; 6(4):860-72. PubMed ID: 9098896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A chaperone-like function of intramolecular high-mannose chains in the oxidative refolding of bovine pancreatic RNase B.
    Yamaguchi H; Uchida M
    J Biochem; 1996 Sep; 120(3):474-7. PubMed ID: 8902606
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Partial purification and characterization of the components of the neutral ribonuclease II-inhibitor system of normal and distrophic mouse skeletal muscle.
    Little BW; Meyer WL
    Can J Biochem; 1981 Mar; 59(3):220-31. PubMed ID: 6261900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Why does ribonuclease irreversibly inactivate at high temperatures?
    Zale SE; Klibanov AM
    Biochemistry; 1986 Sep; 25(19):5432-44. PubMed ID: 3778869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.