These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 6429278)

  • 1. Ethanolamine glycerophospholipid formation by decarboxylation of serine glycerophospholipids in myelinating organ cultures of cerebellum.
    Bradbury K
    J Neurochem; 1984 Aug; 43(2):382-7. PubMed ID: 6429278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oligodendroglial glycerophospholipid synthesis: incorporation of radioactive precursors into ethanolamine glycerophospholipids by calf oligodendroglia prepared by a Percoll procedure and maintained in suspension culture.
    Pleasure D; Hardy M; Johnson G; Lisak R; Silberberg D
    J Neurochem; 1981 Aug; 37(2):452-60. PubMed ID: 6267204
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of phospholipid metabolism in differentiating cells from rat brain cerebral hemispheres in culture. Serine incorporation into serine phosphoglycerides: base exchange and decarboxylation patterns.
    Yavin E; Zeigler BP
    J Biol Chem; 1977 Jan; 252(1):260-7. PubMed ID: 319093
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Serine utilization as a precursor of phosphatidylserine and alkenyl-(plasmenyl)-, alkyl-, and acylethanolamine phosphoglycerides in cultured glioma cells.
    Xu ZL; Byers DM; Palmer FB; Spence MW; Cook HW
    J Biol Chem; 1991 Feb; 266(4):2143-50. PubMed ID: 1899236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biosynthesis of phosphatidylethanolamine via the CDP-ethanolamine route is an important pathway in isolated rat hepatocytes.
    Tijburg LB; Geelen MJ; Van Golde LM
    Biochem Biophys Res Commun; 1989 May; 160(3):1275-80. PubMed ID: 2499328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Utilization of L-serine in the in vivo biosynthesis of glycerophospholipids by rat liver.
    Yeung SK; Kuksis A
    Lipids; 1976 Jul; 11(7):498-505. PubMed ID: 948244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The biosynthesis of phosphatidylserine and phosphatidylethanolamine from L-[3-14C]serine in isolated rat hepatocytes.
    Bjerve KS
    Biochim Biophys Acta; 1985 Mar; 833(3):396-405. PubMed ID: 3918578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Limited metabolic interaction of serine with ethanolamine and choline in the turnover of phosphatidylserine, phosphatidylethanolamine and plasmalogens in cultured glioma cells.
    Xu Z; Byers DM; Palmer FB; Spence MW; Cook HW
    Biochim Biophys Acta; 1993 Jun; 1168(2):167-74. PubMed ID: 8504151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developmental pattern for phosphatidylserine decarboxylase in rat brain.
    White FV; Toews AD; Morell P
    J Neurochem; 1986 Apr; 46(4):1200-6. PubMed ID: 3081685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phospholipid metabolism of serine in Plasmodium-infected erythrocytes involves phosphatidylserine and direct serine decarboxylation.
    Elabbadi N; Ancelin ML; Vial HJ
    Biochem J; 1997 Jun; 324 ( Pt 2)(Pt 2):435-45. PubMed ID: 9182701
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The ethanolamine requirement of keratinocytes for growth is not due to defective synthesis of ethanolamine phosphoacylglycerols by the decarboxylation pathway.
    Arthur G; Lu X
    Biochem J; 1993 Jul; 293 ( Pt 1)(Pt 1):125-30. PubMed ID: 8328953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of 1,25-dihydroxyvitamin D3 on phospholipid metabolism in cultured bovine parathyroid cells.
    Sugimoto T; Ritter C; Slatopolsky E; Morrissey J
    Endocrinology; 1988 Jun; 122(6):2387-92. PubMed ID: 3131114
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ethanol potentiates the uptake of [14C]serine into phosphatidylserine by base-exchange reaction in NG 108-15 cells.
    Rodríguez FD; Alling C; Gustavsson L
    Neurochem Res; 1996 Mar; 21(3):305-11. PubMed ID: 9139235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alteration of ethanolamine glycerophospholipid turnover in trembler dysmyelinating mutant: An analysis of the sciatic nerve by biochemistry and radioautography.
    Do Thi NA; Bourre JM; Koenig HL; Trouillet V; Dumont O; Piciotti M
    Neurochem Int; 1990; 17(4):573-85. PubMed ID: 20504660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Remodeling and sorting process of ethanolamine and choline glycerophospholipids during their axonal transport in the rabbit optic pathway.
    Alberghina M; Viola M; Moro F; Giuffrida AM
    J Neurochem; 1985 Nov; 45(5):1333-40. PubMed ID: 2413169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alternative pathways for phosphatidylcholine synthesis in olive (Olea europaea L.) callus cultures.
    Williams M; Harwood JL
    Biochem J; 1994 Dec; 304 ( Pt 2)(Pt 2):463-8. PubMed ID: 7998981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of phosphatidylserine decarboxylase in brain phospholipid metabolism.
    Butler M; Morell P
    J Neurochem; 1983 Nov; 41(5):1445-54. PubMed ID: 6413658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Turnover of ethanolamine phosphoglycerides in different brain areas of adult and aged rats.
    Gaiti A; Brunetti M; Gatti C; Porcellati G
    Neurochem Res; 1984 Nov; 9(11):1549-58. PubMed ID: 6521818
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphatidylserine functions as the major precursor of phosphatidylethanolamine in cultured BHK-21 cells.
    Voelker DR
    Proc Natl Acad Sci U S A; 1984 May; 81(9):2669-73. PubMed ID: 6425837
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for an ethanolamine cycle: differential recycling of the ethanolamine moiety of phosphatidylethanolamine derived from phosphatidylserine and ethanolamine.
    Shiao YJ; Vance JE
    Biochem J; 1995 Sep; 310 ( Pt 2)(Pt 2):673-9. PubMed ID: 7654210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.