These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 6429465)
21. High-performance liquid chromatography with electrochemical detection as a highly efficient tool for studying catecholaminergic systems. I. Quantification of noradrenaline, adrenaline and dopamine in cultured adrenal medullary cells. Müller TH; Unsicker K J Neurosci Methods; 1981 Jun; 4(1):39-52. PubMed ID: 7253699 [TBL] [Abstract][Full Text] [Related]
22. Assay of free and conjugated catecholamines by high-performance liquid chromatography with electrochemical detection. Elchisak MA; Carlson JH J Chromatogr; 1982 Dec; 233():79-88. PubMed ID: 7161364 [TBL] [Abstract][Full Text] [Related]
23. Current concepts: III. Simultaneous determination of catecholamines in rat brain by reversed-phase liquid chromatography with electrochemical detection. Maruyama Y; Oshima T; Nakajima E Life Sci; 1980 Apr; 26(14):1115-20. PubMed ID: 7392790 [No Abstract] [Full Text] [Related]
24. Reversed-phase ion-pair partion chromatography of biogenic catecholamines and their alpha-methyl homologues with tributylphosphate as stationary phase. Janssen HJ; Tjaden UR; de Jong HJ; Wahlund KG J Chromatogr; 1980 Dec; 202(2):223-32. PubMed ID: 6780580 [TBL] [Abstract][Full Text] [Related]
25. High-performance liquid chromatographic determination of norepinephrine, epinephrine and dopamine in human foetal adrenal gland. Garciá JC; Blanco L; McPherson M; Leiva A; Maciás R J Chromatogr B Biomed Appl; 1994 Jun; 656(1):77-80. PubMed ID: 7952050 [TBL] [Abstract][Full Text] [Related]
26. Chromatographic detection of catecholamines and related substances. Merrills RJ; Farrier JP Anal Biochem; 1967 Dec; 21(3):475-7. PubMed ID: 5582135 [No Abstract] [Full Text] [Related]
27. Paper chromatographic identification of catecholamines. Laasberg LH; Shimosato S J Appl Physiol; 1966 Nov; 21(6):1929-34. PubMed ID: 5929329 [No Abstract] [Full Text] [Related]
29. Electrochemical detection of catecholamines in urine and plasma after separation with HPLC. Weicker H; Feraudi M; Hägele H; Pluto R Clin Chim Acta; 1984 Aug; 141(1):17-25. PubMed ID: 6467618 [TBL] [Abstract][Full Text] [Related]
30. Biomimetic sensor for certain catecholamines employing copper(II) complex and silver nanoparticle modified glassy carbon paste electrode. Sanghavi BJ; Mobin SM; Mathur P; Lahiri GK; Srivastava AK Biosens Bioelectron; 2013 Jan; 39(1):124-32. PubMed ID: 22841445 [TBL] [Abstract][Full Text] [Related]
31. Effects of mobile phase composition on the chromatographic and electrochemical behaviour of catecholamines and selected metabolites. Reversed-phase ion-paired high-performance liquid chromatography using multiple-electrode detection. Bartlett WA J Chromatogr; 1989 Aug; 493(1):1-14. PubMed ID: 2778000 [TBL] [Abstract][Full Text] [Related]
32. Determination of catecholamines in rat tissue by precolumn dansylation using micro high-performance liquid chromatography with fluorescence detection. Yamada K; Aizawa Y J Pharmacol Methods; 1983 Feb; 9(1):1-6. PubMed ID: 6843135 [TBL] [Abstract][Full Text] [Related]
33. A simple high-performance liquid chromatography assay for on-line determination of catecholamines in adrenal gland by direct injection on an ISRP column. Sanchez A; Toledo-Pinto EA; Menezes ML; Pereira OC Pharmacol Res; 2004 Nov; 50(5):481-5. PubMed ID: 15458768 [TBL] [Abstract][Full Text] [Related]
34. Determination of beta-carboline alkaloids in foods and beverages by high-performance liquid chromatography with electrochemical detection at a glassy carbon electrode modified with carbon nanotubes. Agüí L; Peña-Farfal C; Yáñez-Sedeño P; Pingarrón JM Anal Chim Acta; 2007 Mar; 585(2):323-30. PubMed ID: 17386681 [TBL] [Abstract][Full Text] [Related]
35. Simplified determination of the brain catecholamines norepinephrine, 5-hydroxyindoleacetic acid, dopamine and 5-hydroxytryptamine by high-performance liquid chromatography using electrochemical detection. Gregory VM; Larsen B; Benson B J Chromatogr; 1985 Nov; 345(1):140-4. PubMed ID: 2418044 [No Abstract] [Full Text] [Related]
36. Quantitation of catecholamines in urine and in plasma. Moerman EJ; De Schaepdryver AF Clin Chim Acta; 1984 Jun; 139(3):321-33. PubMed ID: 6744625 [No Abstract] [Full Text] [Related]
37. Simultaneous measurement of serotonin, catecholamines and their metabolites in mouse brain homogenates by high-performance liquid chromatography with a microbore column and dual electrochemical detection. Cheng FC; Kuo JS; Shih Y; Lai JS; Ni DR; Chia LG J Chromatogr; 1993 Jun; 615(2):225-36. PubMed ID: 8335700 [TBL] [Abstract][Full Text] [Related]
38. Reversed-phase HPLC separation of plasma norepinephrine, epinephrine, and dopamine, with three-electrode coulometric detection. Musso NR; Vergassola C; Pende A; Lotti G Clin Chem; 1989 Sep; 35(9):1975-7. PubMed ID: 2776329 [TBL] [Abstract][Full Text] [Related]
39. The application of paper and partition thin-layer chromatography to the separation of catecholamines and their metabolites. Vahidi A; Sankar DV J Chromatogr; 1969 Aug; 43(1):135-40. PubMed ID: 5802177 [No Abstract] [Full Text] [Related]
40. Sensitive method for determination of picogram amounts of epinephrine and other catecholamines in microdissected samples of rat brain using liquid chromatography with electrochemical detection. Opacka-Juffry J; Tacconelli F; Coen CW J Chromatogr; 1988 Dec; 433():41-51. PubMed ID: 3235571 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]