BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 6430)

  • 1. Adenosine 5'-triphosphate synthesis energized by an artificially imposed membrane potential in membrane vesicles of Escherichia coli.
    Tsuchiya T; Rosen BP
    J Bacteriol; 1976 Jul; 127(1):154-61. PubMed ID: 6430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ATP synthesis by an artificial proton gradient in right-side-out membrane vesicles of Escherichia coli.
    Tsuchiya T; Rosen BP
    Biochem Biophys Res Commun; 1976 Jan; 68(2):497-502. PubMed ID: 3178
    [No Abstract]   [Full Text] [Related]  

  • 3. Protonmotive force as the source of energy for adenosine 5'-triphosphate synthesis in Escherichia coli.
    Wilson DM; Alderette JF; Maloney PC; Wilson TH
    J Bacteriol; 1976 Apr; 126(1):327-37. PubMed ID: 4427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidative phosphorylation in right-side-out membrane vesicles from Escherichia coli.
    Tsuchiya T
    J Biol Chem; 1976 Sep; 251(17):5315-20. PubMed ID: 8460
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adenosine 5'-triphosphate synthesis driven by a protonmotive force in membrane vesicles of Escherichia coli.
    Tsuchiya T
    J Bacteriol; 1977 Feb; 129(2):763-9. PubMed ID: 14110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane bound and soluble adenosine triphosphatase of Escherichia coli K 12. Kinetic properties of the basal and trypsin-stimulated activities.
    Carreira J; Muñoz E
    Mol Cell Biochem; 1975 Nov; 9(2):85-95. PubMed ID: 127930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Restoration of active calcium transport in vesicles of an Mg2+-ATPase mutant of Escherichia coli by wild-type Mg2+-ATPase.
    Tsuchiya T; Rosen BP
    Biochem Biophys Res Commun; 1975 Apr; 63(4):832-8. PubMed ID: 124173
    [No Abstract]   [Full Text] [Related]  

  • 8. ATP synthesis driven by a protonmotive force in Streptococcus lactis.
    Maloney PC; Wilson TH
    J Membr Biol; 1975-1976; 25(3-4):285-310. PubMed ID: 3650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy transduction in Escherichia coli. The role of the Mg2+ATPase.
    Tsuchiya T; Rosen BP
    J Biol Chem; 1975 Nov; 250(21):8409-15. PubMed ID: 127791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Delta pH, H+ diffusion potentials, and Mg2+ ATPase in neurosecretory vesicles isolated from bovine neurohypophyses.
    Russell JT
    J Biol Chem; 1984 Aug; 259(15):9496-507. PubMed ID: 6146615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemiosmotic coupling in Methanobacterium thermoautotrophicum: hydrogen-dependent adenosine 5'-triphosphate synthesis by subcellular particles.
    Doddema HJ; van der Drift C; Vogels GD; Veenhuis M
    J Bacteriol; 1979 Dec; 140(3):1081-9. PubMed ID: 160408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrolysis and synthesis of ATP by membrane-bound ATPase from a motile Streptococcus.
    van der Drift C; Janssen DB; van Wezenbeek PM
    Arch Microbiol; 1978 Oct; 119(1):31-6. PubMed ID: 31147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ATP hydrolysis and synthesis by the membrane-bound ATP synthetase complex of Methanobacterium thermoautotrophicum.
    Doddema HJ; Hutten TJ; van der Drift C; Vogels GD
    J Bacteriol; 1978 Oct; 136(1):19-23. PubMed ID: 30747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ATP synthesis catalyzed by purified DCCD-sensitive ATPase incorporated into reconstituted purple membrane vesicles.
    Yoshida M; Sone N; Hirata H; Kagawa Y
    Biochem Biophys Res Commun; 1975 Dec; 67(4):1295-300. PubMed ID: 1031
    [No Abstract]   [Full Text] [Related]  

  • 15. Mg2+-ATPase defective mutant of Escherichia coli and thiamine transport.
    Nishimune T; Hayashi R
    Experientia; 1979 Oct; 35(10):1318-20. PubMed ID: 159188
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison between calcium transport and adenosine triphosphatase activity in membrane vesicles derived from rabbit kidney proximal tubules.
    Vieyra A; Nachbin L; de Dios-Abad E; Goldfeld M; Meyer-Fernandes JR; de Moraes L
    J Biol Chem; 1986 Mar; 261(9):4247-55. PubMed ID: 3005327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A protonmotive force drives ATP synthesis in bacteria.
    Maloney PC; Kashket ER; Wilson TH
    Proc Natl Acad Sci U S A; 1974 Oct; 71(10):3896-900. PubMed ID: 4279406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ATP-dependent calcium transport in isolated membrane vesicles from Azotobacter vinelandii.
    Bhattacharyya P; Barnes EM
    J Biol Chem; 1976 Sep; 251(18):56-14-9. PubMed ID: 9392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Membrane-bound adenosine triphosphatase of Escherichia coli. III. Effects of sodium azide on the enzyme functions.
    Kobayashi H; Maeda M; Anraku Y
    J Biochem; 1977 Apr; 81(4):1071-7. PubMed ID: 142083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Active K+ transport in Mycoplasms mycoides var. Capri. Relationships between K+ distribution, electrical potential and ATPase activity.
    Leblanc G; Le Grimellec C
    Biochim Biophys Acta; 1979 Jun; 554(1):168-79. PubMed ID: 36912
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.