These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 6430228)

  • 61. Anaerobic transport in Escherichia coli membrane vesicles.
    Konings WN; Kaback HR
    Proc Natl Acad Sci U S A; 1973 Dec; 70(12):3376-81. PubMed ID: 4587250
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Tyrosine transport by membrane vesicles isolated from rat brain.
    Aragón MC; Giménez C; Mayor F; Marvizón JG; Valdivieso F
    Biochim Biophys Acta; 1981 Sep; 646(3):465-70. PubMed ID: 7284373
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Mechanisms of active transport in isolated bacterial membrane vesicles. Further studies on amino acid transport in Staphylococcus aureus membrane vesicles.
    Short SA; Kaback HR
    J Biol Chem; 1974 Jul; 249(13):4275-81. PubMed ID: 4853134
    [No Abstract]   [Full Text] [Related]  

  • 64. Role of quinones in electron transport to oxygen and nitrate in Escherichia coli. Studies with a ubiA- menA- double quinone mutant.
    Wallace BJ; Young IG
    Biochim Biophys Acta; 1977 Jul; 461(1):84-100. PubMed ID: 195602
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Reconstitution of transport dependent on D-lactate or glycerol 3-phosphate in membrane vesicles of Escherichia coli deficient in the corresponding dehydrogenases.
    Futai M
    Biochemistry; 1974 May; 13(11):2327-33. PubMed ID: 4598623
    [No Abstract]   [Full Text] [Related]  

  • 66. Anaerobic respiratory growth of Vibrio harveyi, Vibrio fischeri and Photobacterium leiognathi with trimethylamine N-oxide, nitrate and fumarate: ecological implications.
    Proctor LM; Gunsalus RP
    Environ Microbiol; 2000 Aug; 2(4):399-406. PubMed ID: 11234928
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Energy coupling in the active transport of proline and glutamate by the photosynthetic halophile Ectothiorhodospira halophila.
    Rinehart CA; Hubbard JS
    J Bacteriol; 1976 Sep; 127(3):1255-64. PubMed ID: 956126
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Control of phosphoenolpyruvate-dependent phosphotransferase-mediated sugar transport in Escherichia coli by energization of the cell membrane.
    Reider E; Wagner EF; Schweiger M
    Proc Natl Acad Sci U S A; 1979 Nov; 76(11):5529-33. PubMed ID: 392504
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Proton translocation and the respiratory nitrate reductase of Escherichia coli.
    Garland PB; Downie JA; Haddock BA
    Biochem J; 1975 Dec; 152(3):547-59. PubMed ID: 5996
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Sodium ion-dependent amino acid transport in membrane vesicles of Bacillus stearothermophilus.
    Heyne RI; de Vrij W; Crielaard W; Konings WN
    J Bacteriol; 1991 Jan; 173(2):791-800. PubMed ID: 1670936
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Light-induced leucine transport in Halobacterium halobium envelope vesicles: a chemiosmotic system.
    MacDonald RE; Lanyi LK
    Biochemistry; 1975 Jul; 14(13):2882-9. PubMed ID: 50859
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Chloride/formate exchange with formic acid recycling: a mechanism of active chloride transport across epithelial membranes.
    Karniski LP; Aronson PS
    Proc Natl Acad Sci U S A; 1985 Sep; 82(18):6362-5. PubMed ID: 3862136
    [TBL] [Abstract][Full Text] [Related]  

  • 73. K+-dependent Na+ transport driven by respiration in Escherichia coli cells and membrane vesicles.
    Verkhovskaya ML; Verkhovsky MI; Wikström M
    Biochim Biophys Acta; 1996 Mar; 1273(3):207-16. PubMed ID: 8616158
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Outer membrane cytochromes of Shewanella putrefaciens MR-1: spectral analysis, and purification of the 83-kDa c-type cytochrome.
    Myers CR; Myers JM
    Biochim Biophys Acta; 1997 Jun; 1326(2):307-18. PubMed ID: 9218561
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Anaerobic transport of amino acids coupled to the glycerol-3-phosphate-fumarate oxidoreductase system in a cytochrome-deficient mutant of Escherichia coli.
    Singh AP; Bragg PD
    Biochim Biophys Acta; 1976 Mar; 423(3):450-61. PubMed ID: 130924
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The formate dehydrogenase involved in electron transport from formate to fumarate in Vibrio succinogenes.
    Kröger A; Winkler E; Innerhofer A; Hackenberg H; Schägger H
    Eur J Biochem; 1979 Mar; 94(2):465-75. PubMed ID: 428397
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Amino acid transport in kidney epithelial cell line (MDCK): characteristics of Na+/amino acid symport in membrane vesicles and basolateral localization in cell monolayers.
    Lever JE; Kennedy BG; Vasan R
    Arch Biochem Biophys; 1984 Nov; 234(2):330-40. PubMed ID: 6093696
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Operation and energy dependence of the reducing-equivalent shuttles during lactate metabolism by isolated hepatocytes.
    Berry MN; Phillips JW; Gregory RB; Grivell AR; Wallace PG
    Biochim Biophys Acta; 1992 Sep; 1136(3):223-30. PubMed ID: 1520699
    [TBL] [Abstract][Full Text] [Related]  

  • 79. TorT, a member of a new periplasmic binding protein family, triggers induction of the Tor respiratory system upon trimethylamine N-oxide electron-acceptor binding in Escherichia coli.
    Baraquet C; Théraulaz L; Guiral M; Lafitte D; Méjean V; Jourlin-Castelli C
    J Biol Chem; 2006 Dec; 281(50):38189-99. PubMed ID: 17040909
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Trimethylamine N-oxide impairs pyruvate and fatty acid oxidation in cardiac mitochondria.
    Makrecka-Kuka M; Volska K; Antone U; Vilskersts R; Grinberga S; Bandere D; Liepinsh E; Dambrova M
    Toxicol Lett; 2017 Feb; 267():32-38. PubMed ID: 28049038
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.