These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 6430228)

  • 81. Transport of amino acids in renal brush border membrane vesicles. Uptake of the neutral amino acid L-alanine.
    Fass SJ; Hammerman MR; Sacktor B
    J Biol Chem; 1977 Jan; 252(2):583-90. PubMed ID: 833145
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Sodium gradient-dependent L-glutamate transport in renal brush border membrane vesicles. Evidence for an electroneutral mechanism.
    Schneider EG; Hammerman MR; Sacktor B
    J Biol Chem; 1980 Aug; 255(16):7650-6. PubMed ID: 6156940
    [No Abstract]   [Full Text] [Related]  

  • 83. Transport of amino acids in renal brush border membrane vesicles. Uptake of L-proline.
    Hammerman MR; Sacktor B
    J Biol Chem; 1977 Jan; 252(2):591-5. PubMed ID: 833146
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Comparative transport activity of intact cells, membrane vesicles, and mesosomes of Bacillus licheniformis.
    MacLeod RA; Thurman P; Rogers HJ
    J Bacteriol; 1973 Jan; 113(1):329-40. PubMed ID: 4347247
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Reconstitution of D-lactate-dependent transport in membrane vesicles from a D-lactate dehydrogenase mutant of Escherichia coli.
    Reeves JP; Hong JS; Kaback HR
    Proc Natl Acad Sci U S A; 1973 Jul; 70(7):1917-21. PubMed ID: 4579004
    [TBL] [Abstract][Full Text] [Related]  

  • 86. An Escherichia coli mutant containing only demethylmenaquinone, but no menaquinone: effects on fumarate, dimethylsulfoxide, trimethylamine N-oxide and nitrate respiration.
    Wissenbach U; Ternes D; Unden G
    Arch Microbiol; 1992; 158(1):68-73. PubMed ID: 1444716
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Anaerobic electron acceptor chemotaxis in Shewanella putrefaciens.
    Nealson KH; Moser DP; Saffarini DA
    Appl Environ Microbiol; 1995 Apr; 61(4):1551-4. PubMed ID: 11536689
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Oxalate:formate exchange. The basis for energy coupling in Oxalobacter.
    Anantharam V; Allison MJ; Maloney PC
    J Biol Chem; 1989 May; 264(13):7244-50. PubMed ID: 2708365
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Genomic analysis of anaerobic respiration in the archaeon Halobacterium sp. strain NRC-1: dimethyl sulfoxide and trimethylamine N-oxide as terminal electron acceptors.
    Müller JA; DasSarma S
    J Bacteriol; 2005 Mar; 187(5):1659-67. PubMed ID: 15716436
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Transport properties of membrane vesicles from Acholeplasma laidlawii. III. Evidence of active nature of glucose transport.
    Fedotov NS; Panchenko LF; Tarshis MA
    Folia Microbiol (Praha); 1975; 20(6):488-95. PubMed ID: 1193497
    [TBL] [Abstract][Full Text] [Related]  

  • 91. A membrane-bound NAD(P)+-reducing hydrogenase provides reduced pyridine nucleotides during citrate fermentation by Klebsiella pneumoniae.
    Steuber J; Krebs W; Bott M; Dimroth P
    J Bacteriol; 1999 Jan; 181(1):241-5. PubMed ID: 9864336
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Energetics of glycylglycine transport in Escherichia coli.
    Cowell JL
    J Bacteriol; 1974 Oct; 120(1):139-46. PubMed ID: 4278690
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Microbial dimethylsulfoxide and trimethylamine-N-oxide respiration.
    McCrindle SL; Kappler U; McEwan AG
    Adv Microb Physiol; 2005; 50():147-98. PubMed ID: 16221580
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Fumarate reduction in Proteus mirabilis.
    Van der Beek EG; Oltmann LF; Stouthamer AH
    Arch Microbiol; 1976 Nov; 110(23):195-206. PubMed ID: 189721
    [TBL] [Abstract][Full Text] [Related]  

  • 95. 1HNMR-based metabolomic profile of rats with experimental acute pancreatitis.
    Li J; Zhao XL; Liu YX; Peng XH; Zhu SF; Guo H; Liu YL; Wan MH; Tang WF
    BMC Gastroenterol; 2014 Jun; 14():115. PubMed ID: 24975214
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Cloning and sequence of cymA, a gene encoding a tetraheme cytochrome c required for reduction of iron(III), fumarate, and nitrate by Shewanella putrefaciens MR-1.
    Myers CR; Myers JM
    J Bacteriol; 1997 Feb; 179(4):1143-52. PubMed ID: 9023196
    [TBL] [Abstract][Full Text] [Related]  

  • 97. A biochemical study of the intermediary carbon metabolism of Shewanella putrefaciens.
    Scott JH; Nealson KH
    J Bacteriol; 1994 Jun; 176(11):3408-11. PubMed ID: 8195102
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Amino acid and lactate catabolism in trimethylamine oxide respiration of Alteromonas putrefaciens NCMB 1735.
    Ringø E; Stenberg E; Strøm AR
    Appl Environ Microbiol; 1984 May; 47(5):1084-9. PubMed ID: 6742826
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Trimethylamine oxide respiration of Alteromonas putrefaciens NCMB 1735: Na+-stimulated anaerobic transport in cells and membrane vesicles.
    Stenberg E; Ringø E; Strøm AR
    Appl Environ Microbiol; 1984 May; 47(5):1090-5. PubMed ID: 6430228
    [TBL] [Abstract][Full Text] [Related]  

  • 100.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.