These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102. Trimethylamine oxide respiration of Alteromonas putrefaciens NCMB 1735: Na+-stimulated anaerobic transport in cells and membrane vesicles. Stenberg E; Ringø E; Strøm AR Appl Environ Microbiol; 1984 May; 47(5):1090-5. PubMed ID: 6430228 [TBL] [Abstract][Full Text] [Related]
103. Dimethylsulphoxide and trimethylamine oxide respiration of Proteus vulgaris. Evidence for a common terminal reductase system. Styrvold OB; Strøm AR Arch Microbiol; 1984 Nov; 140(1):74-8. PubMed ID: 6442555 [TBL] [Abstract][Full Text] [Related]
104. Trimethylamine oxide: a terminal electron acceptor in anaerobic respiration of bacteria. Strøm AR; Olafsen JA; Larsen H J Gen Microbiol; 1979 Jun; 112(2):315-20. PubMed ID: 479836 [TBL] [Abstract][Full Text] [Related]
105. Sodium ion-substrate symport in a marine bacterium. Niven DF; MacLeod RA J Bacteriol; 1980 May; 142(2):603-7. PubMed ID: 7380801 [TBL] [Abstract][Full Text] [Related]
106. Proton translocation coupled to trimethylamine N-oxide reduction in anaerobically grown Escherichia coli. Takagi M; Tsuchiya T; Ishimoto M J Bacteriol; 1981 Dec; 148(3):762-8. PubMed ID: 7031034 [TBL] [Abstract][Full Text] [Related]
107. Factors affecting the lytic susceptibility of some marine and terrestrial bacteria. Laddaga RA; MacLeod RA Can J Microbiol; 1982 Apr; 28(4):414-24. PubMed ID: 6807520 [TBL] [Abstract][Full Text] [Related]
108. Trimethylamine oxide respiration in Proteus sp. strain NTHC153: electron transfer-dependent phosphorylation and L-serine transport. Stenberg E; Styrvold OB; Strøm AR J Bacteriol; 1982 Jan; 149(1):22-8. PubMed ID: 6798018 [TBL] [Abstract][Full Text] [Related]
109. Amino acid and lactate catabolism in trimethylamine oxide respiration of Alteromonas putrefaciens NCMB 1735. Ringø E; Stenberg E; Strøm AR Appl Environ Microbiol; 1984 May; 47(5):1084-9. PubMed ID: 6742826 [TBL] [Abstract][Full Text] [Related]
110. Mechanisms of active transport in isolated membrane vesicles. II. The mechanism of energy coupling between D-lactic dehydrogenase and beta-galactoside transport in membrane preparations from Escherichia coli. Kaback HR; Barnes EM J Biol Chem; 1971 Sep; 246(17):5523-31. PubMed ID: 4941946 [No Abstract] [Full Text] [Related]
111. Bacterial cytochromes. I. Structural aspects. Kamen MD; Horio T Annu Rev Biochem; 1970; 39():673-700. PubMed ID: 4920828 [No Abstract] [Full Text] [Related]
112. Proton/sodium ion antiport in Escherichia coli. West IC; Mitchell P Biochem J; 1974 Oct; 144(1):87-90. PubMed ID: 4618479 [TBL] [Abstract][Full Text] [Related]
113. Na + -dependent amino acid transport in isolated membrane vesicles of a marine pseudomonad energized by electron donors. Sprott GD; MacLeod RA Biochem Biophys Res Commun; 1972 May; 47(4):838-45. PubMed ID: 4337324 [No Abstract] [Full Text] [Related]
114. Kinetics of Naplus-dependent amino acid transport using cells and membrane vesicles of a marine pseudomonad. Sprott GD; Drozdowski JP; Martin EL; MacLeod RA Can J Microbiol; 1975 Jan; 21(1):43-50. PubMed ID: 1116038 [TBL] [Abstract][Full Text] [Related]
115. Osmotic effects of membrane permeability in a marine bacterium. MacLeod RA; Goodbody M; Thompson J J Bacteriol; 1978 Mar; 133(3):1135-43. PubMed ID: 641005 [TBL] [Abstract][Full Text] [Related]