These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 6430267)

  • 1. Kinetics of tryptic hydrolysis of the arginine-valine bond in folded and unfolded ribonuclease T1.
    Pace CN; Barrett AJ
    Biochem J; 1984 Apr; 219(2):411-7. PubMed ID: 6430267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The structure and function of ribonuclease T1. XXII. Tryptic cleavages of the single lysyl and arginyl bonds in ribonuclease T1.
    Takahashi K; Inoue N
    J Biochem; 1977 Feb; 81(2):415-21. PubMed ID: 191442
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation and properties of trypsin-digested ribonuclease T1 split at the single arginyl peptide bond.
    Tamaoki H; Sakiyama F; Narita K
    J Biochem; 1976 Mar; 79(3):579-89. PubMed ID: 820695
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spermine stabilization of folded ribonuclease T1.
    Walz FG; Kitareewan S
    J Biol Chem; 1990 May; 265(13):7127-37. PubMed ID: 1970567
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure of a rapidly formed intermediate in ribonuclease T1 folding.
    Kiefhaber T; Schmid FX; Willaert K; Engelborghs Y; Chaffotte A
    Protein Sci; 1992 Sep; 1(9):1162-72. PubMed ID: 1304394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Local structure in a tryptic fragment of performic acid oxidized ribonuclease A corresponding to a proposed polypeptide chain-folding initiation site detected by tyrosine fluorescence lifetime and proton magnetic resonance measurements.
    Haas E; Montelione GT; McWherter CA; Scheraga HA
    Biochemistry; 1987 Mar; 26(6):1672-83. PubMed ID: 3593685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structure of guanosine-free ribonuclease T1, complexed with vanadate (V), suggests conformational change upon substrate binding.
    Kostrewa D; Choe HW; Heinemann U; Saenger W
    Biochemistry; 1989 Sep; 28(19):7592-600. PubMed ID: 2514790
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and kinetic parameters of hydrolysis by trypsin of some acyl-arginyl-p-nitroanilides and peptides containing arginyl-p-nitroanilide.
    Juliano MA; Juliano L
    Braz J Med Biol Res; 1985; 18(4):435-45. PubMed ID: 3915433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Picosecond time-resolved fluorescence of ribonuclease T1. A pH and substrate analogue binding study.
    Chen LX; Longworth JW; Fleming GR
    Biophys J; 1987 Jun; 51(6):865-73. PubMed ID: 3038204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein dynamics. A time-resolved fluorescence, energetic and molecular dynamics study of ribonuclease T1.
    MacKerell AD; Rigler R; Nilsson L; Hahn U; Saenger W
    Biophys Chem; 1987 May; 26(2-3):247-61. PubMed ID: 3111558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformational stability and activity of ribonuclease T1 with zero, one, and two intact disulfide bonds.
    Pace CN; Grimsley GR; Thomson JA; Barnett BJ
    J Biol Chem; 1988 Aug; 263(24):11820-5. PubMed ID: 2457027
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Analysis of the guanyl-specific ribonuclease structures in fungi: determination of the amino acid sequence and prediction of the secondary ribonuclease structure in Penicillium brevicompactum].
    Shliapnikov SV; Iakovlev GI; Kulikov VA
    Dokl Akad Nauk SSSR; 1985; 281(1):226-9. PubMed ID: 3922722
    [No Abstract]   [Full Text] [Related]  

  • 13. Fluorescence lifetime quenching and anisotropy studies of ribonuclease T1.
    James DR; Demmer DR; Steer RP; Verrall RE
    Biochemistry; 1985 Sep; 24(20):5517-26. PubMed ID: 3935161
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation and properties of water-insoluble derivatives of ribonuclease T1.
    Lee JC
    Biochim Biophys Acta; 1971 Jun; 235(3):435-41. PubMed ID: 5006433
    [No Abstract]   [Full Text] [Related]  

  • 15. Kinetics of hydrolysis of phenylthiazolones of arginine, homoarginine, norarginine, and canaavanine by trypsin.
    Ohyama S; Mizusaki K; Tsunematsu H; Makisumi S
    J Biochem; 1979 Jul; 86(1):11-6. PubMed ID: 39064
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of tryptic hydrolysis as a probe of the structure of human plasma apolipoprotein A-II.
    Massey JB; Hickson-Bick DL; Gotto AM; Pownall HJ
    Biochim Biophys Acta; 1989 Nov; 999(2):121-7. PubMed ID: 2512990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of protein conformation on disulfide bond formation in the oxidative folding of ribonuclease T1.
    Frech C; Schmid FX
    J Mol Biol; 1995 Aug; 251(1):135-49. PubMed ID: 7643382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ribonuclease T1 is stabilized by cation and anion binding.
    Pace CN; Grimsley GR
    Biochemistry; 1988 May; 27(9):3242-6. PubMed ID: 3134046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frequency domain measurements of the fluorescence lifetime of ribonuclease T1.
    Eftink MR; Ghiron CA
    Biophys J; 1987 Sep; 52(3):467-73. PubMed ID: 3115328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Specificity of trypsin digestion and conformational flexibility at different sites of unfolded lysozyme.
    Noda Y; Fujiwara K; Yamamoto K; Fukuno T; Segawa S
    Biopolymers; 1994 Feb; 34(2):217-26. PubMed ID: 8142590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.