These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 6430267)

  • 21. Crystallographic study of mechanism of ribonuclease T1-catalysed specific RNA hydrolysis.
    Heinemann U; Saenger W
    J Biomol Struct Dyn; 1983 Oct; 1(2):523-38. PubMed ID: 6086061
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The role of packing interactions in stabilizing folded proteins.
    Sneddon SF; Tobias DJ
    Biochemistry; 1992 Mar; 31(10):2842-6. PubMed ID: 1547226
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stability and folding kinetics of ribonuclease T1 are strongly altered by the replacement of cis-proline 39 with alanine.
    Mayr LM; Landt O; Hahn U; Schmid FX
    J Mol Biol; 1993 Jun; 231(3):897-912. PubMed ID: 8515459
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular dynamics of tryptophan in ribonuclease-T1. I. Simulation strategies and fluorescence anisotropy decay.
    Axelsen PH; Haydock C; Prendergast FG
    Biophys J; 1988 Aug; 54(2):249-58. PubMed ID: 3145038
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of primary sequence transpositions on the folding pathways of ribonuclease T1.
    Johnson JL; Raushel FM
    Biochemistry; 1996 Aug; 35(31):10223-33. PubMed ID: 8756488
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Three-dimensional structure of the ribonuclease T1 2'-GMP complex at 1.9-A resolution.
    Arni R; Heinemann U; Tokuoka R; Saenger W
    J Biol Chem; 1988 Oct; 263(30):15358-68. PubMed ID: 2844811
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A revision and confirmation of the amino acid sequence of ribonuclease T1.
    Takahashi K
    J Biochem; 1985 Sep; 98(3):815-7. PubMed ID: 3936843
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Determination of cis-trans proline isomerization by trypsin proteolysis. Application to a model pentapeptide and to oxidized ribonuclease A.
    Lin LN; Brandts JF
    Biochemistry; 1983 Feb; 22(3):553-9. PubMed ID: 6838811
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reverse action of ribonuclease T1 in frozen aqueous systems.
    Haensler M; Hahn U; Jakubke HD
    Biol Chem; 1997 Feb; 378(2):115-8. PubMed ID: 9088540
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hydrolysis of phenylthiazolones of p-guanidinophenylalanine and arginine by trypsin and related enzymes.
    Tsunematsu H; Hatanaka Y; Sugahara Y; Makisumi S
    J Biochem; 1983 Oct; 94(4):1119-25. PubMed ID: 6361008
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Dependence of thrombin- and trypsin-catalyzed hydrolysis of N-alpha-arylsulfonyl-L-arginine methyl esters on the structure of acylamide part of substrates].
    Fedoriak DM; Kibirev VK; Sereĭskaia AA; Serebrianyĭ SB
    Biokhimiia; 1977 Sep; 42(9):1595-602. PubMed ID: 20997
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A thermodynamic coupling mechanism for GroEL-mediated unfolding.
    Walter S; Lorimer GH; Schmid FX
    Proc Natl Acad Sci U S A; 1996 Sep; 93(18):9425-30. PubMed ID: 8790346
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Glu 46 of ribonuclease T1 is an essential residue for the recognition of guanine base.
    Nishikawa S; Kimura T; Morioka H; Uesugi S; Hakoshima T; Tomita K; Ohtsuka E; Ikehara M
    Biochem Biophys Res Commun; 1988 Jan; 150(1):68-74. PubMed ID: 3122758
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular dynamics of tryptophan in ribonuclease-T1. II. Correlations with fluorescence.
    Axelsen PH; Prendergast FG
    Biophys J; 1989 Jul; 56(1):43-66. PubMed ID: 2502198
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inquiries into the structure-function relationship of ribonuclease T1 using chemically synthesized coding sequences.
    Ikehara M; Ohtsuka E; Tokunaga T; Nishikawa S; Uesugi S; Tanaka T; Aoyama Y; Kikyodani S; Fujimoto K; Yanase K
    Proc Natl Acad Sci U S A; 1986 Jul; 83(13):4695-9. PubMed ID: 3014504
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The specific guanine binding site of the ribonuclease T1 family enzymes and of G-proteins is modeled in the cocrystal formed by 7-methylguanosine-5'-phosphate and phenylalanine.
    Saenger W; Flogel R; Zielenkiewicz P; Inoue M; Ishida T
    J Biochem; 1989 Aug; 106(2):189-91. PubMed ID: 2509438
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Binding of vanadate (V) to ribonuclease-T1 and inosine, investigated by 51V NMR spectroscopy.
    Rehder D; Holst H; Quaas R; Hinrichs W; Hahn U; Saenger W
    J Inorg Biochem; 1989 Oct; 37(2):141-50. PubMed ID: 2513377
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Kinetic models for unfolding and refolding of ribonuclease T1 with substitution of cis-proline 39 by alanine.
    Mayr LM; Schmid FX
    J Mol Biol; 1993 Jun; 231(3):913-26. PubMed ID: 8515460
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Extracellular guanyl-specific ribonuclease Sa from the actinomycete Streptomyces aureofaciens. Primary structure and homology with ribonucleases from bacteria and fungi].
    Shliapnikov SV; Both V; Kulikov VA; Dement'ev AA; Zelinka J
    Bioorg Khim; 1987 Jun; 13(6):760-72. PubMed ID: 3118883
    [TBL] [Abstract][Full Text] [Related]  

  • 40. New class of sensitive and selective fluorogenic substrates for serine proteinases. Amino acid and dipeptide derivatives of rhodamine.
    Leytus SP; Patterson WL; Mangel WF
    Biochem J; 1983 Nov; 215(2):253-60. PubMed ID: 6228222
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.