These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
43. Influence of high hydrostatic pressure on the proteolysis of beta-lactoglobulin A by trypsin. Chicón R; Belloque J; Recio I; López-Fandiño R J Dairy Res; 2006 Feb; 73(1):121-8. PubMed ID: 16433971 [TBL] [Abstract][Full Text] [Related]
44. [Hydrolysis of the methyl esters of the N-arylsulfonyl derivatives of L-arginine by thrombin and trypsin]. Serebrianyĭ SB; Kibirev VK; Sereĭskaia AA; Fedoriak DM Biokhimiia; 1975; 40(1):103-6. PubMed ID: 166707 [TBL] [Abstract][Full Text] [Related]
45. The contribution of cross-links to protein stability: a normal mode analysis of the configurational entropy of the native state. Tidor B; Karplus M Proteins; 1993 Jan; 15(1):71-9. PubMed ID: 7680808 [TBL] [Abstract][Full Text] [Related]
46. Peptidyl-prolyl cis-trans isomerase improves the efficiency of protein disulfide isomerase as a catalyst of protein folding. Schönbrunner ER; Schmid FX Proc Natl Acad Sci U S A; 1992 May; 89(10):4510-3. PubMed ID: 1584784 [TBL] [Abstract][Full Text] [Related]
47. Impact of four (13)C-proline isotope labels on the infrared spectra of ribonuclease T1. Moritz R; Fabian H; Hahn U; Diem M; Naumann D J Am Chem Soc; 2002 Jun; 124(22):6259-64. PubMed ID: 12033852 [TBL] [Abstract][Full Text] [Related]
48. Kinetic modeling of demasking and hydrolysis of peptide bonds during proteolysis of β-lactoglobulin by trypsin. Vorob'ev MM; Rao NM; Kochetkov KA Dokl Biochem Biophys; 2016 Nov; 471(1):423-427. PubMed ID: 28058685 [TBL] [Abstract][Full Text] [Related]
49. The conformation of the lysyl side chain of substrates at the active center of trypsin. Mizusaki K; Sugahara Y; Tsunematsu H; Makisumi S J Biochem; 1986 Jul; 100(1):21-5. PubMed ID: 3093470 [TBL] [Abstract][Full Text] [Related]
50. Secondary structure and temperature-induced unfolding and refolding of ribonuclease T1 in aqueous solution. A Fourier transform infrared spectroscopic study. Fabian H; Schultz C; Naumann D; Landt O; Hahn U; Saenger W J Mol Biol; 1993 Aug; 232(3):967-81. PubMed ID: 8355280 [TBL] [Abstract][Full Text] [Related]
52. Hexacyanochromate ion as a paramagnetic anion probe for active sites of enzymes. Inagaki F; Shimada I J Inorg Biochem; 1986; 28(2-3):311-7. PubMed ID: 3100720 [TBL] [Abstract][Full Text] [Related]
53. Mass spectrometric identification of the trypsin cleavage pathway in lysyl-proline containing oligotuftsin peptides. Manea M; Mezo G; Hudecz F; Przybylski M J Pept Sci; 2007 Apr; 13(4):227-36. PubMed ID: 17394121 [TBL] [Abstract][Full Text] [Related]
54. Presteady state kinetics of trypsin-catalyzed hydrolyses of dansyl-arginine derivatives. Goto S; Hess GP J Biochem; 1979 Sep; 86(3):619-25. PubMed ID: 41834 [TBL] [Abstract][Full Text] [Related]
55. Synthesis and the stereoselective enzymatic hydrolysis of flurbiprofen-basic amino acid ethyl esters. Tsunematsu H; Yoshida S; Horie K; Yamamoto M J Drug Target; 1995; 2(6):517-25. PubMed ID: 7773614 [TBL] [Abstract][Full Text] [Related]
56. Evaluation of the extent of the binding site in human tissue kallikrein by synthetic substrates with sequences of human kininogen fragments. Del Nery E; Chagas JR; Juliano MA; Prado ES; Juliano L Biochem J; 1995 Nov; 312 ( Pt 1)(Pt 1):233-8. PubMed ID: 7492318 [TBL] [Abstract][Full Text] [Related]
57. Design of peptide enzymes (pepzymes): surface-simulation synthetic peptides that mimic the chymotrypsin and trypsin active sites exhibit the activity and specificity of the respective enzyme. Atassi MZ; Manshouri T Proc Natl Acad Sci U S A; 1993 Sep; 90(17):8282-6. PubMed ID: 8367494 [TBL] [Abstract][Full Text] [Related]