These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 6430360)
1. Amine inversion in proteins. A 13C-NMR study of proton exchange and nitrogen inversion rates in N epsilon,N epsilon,N alpha,N alpha-[13C]tetramethyllysine,N epsilon,N epsilon,N alpha,N alpha-[13C]tetramethyllysine methyl ester, and reductively methylated concanavalin A. Goux WJ; Teherani J; Sherry AD Biophys Chem; 1984 Jun; 19(4):363-73. PubMed ID: 6430360 [TBL] [Abstract][Full Text] [Related]
2. Physical studies of 13C-methylated concanavalin A. pH- and Co2+-induced nuclear magnetic resonance shifts. Sherry AD; Teherani J J Biol Chem; 1983 Jul; 258(14):8663-9. PubMed ID: 6863304 [TBL] [Abstract][Full Text] [Related]
3. Methyl motions in 13C-methylated concanavalin as studied by 13C magnetic resonance relaxation techniques. Sherry AD; Keepers J; James TL; Teherani J Biochemistry; 1984 Jul; 23(14):3181-5. PubMed ID: 6432038 [TBL] [Abstract][Full Text] [Related]
4. Rotamer Jumps, Proton Exchange, and Amine Inversion Dynamics of Dimethylated Lysine Residues in Proteins Resolved by pH-Dependent Weininger U; Modig K; Ishida H; Vogel HJ; Akke M J Phys Chem B; 2019 Nov; 123(46):9742-9750. PubMed ID: 31580078 [TBL] [Abstract][Full Text] [Related]
5. Specific 13C reductive methylation of glycophorin A. Possible relation of the N-terminal amino acid and the lysine residues to MN blood group specificities. Hardy RE; Batstone-Cunningham RL; Dill K Arch Biochem Biophys; 1983 Apr; 222(1):222-30. PubMed ID: 6404224 [TBL] [Abstract][Full Text] [Related]
6. Intramolecular interactions of amino groups in 13C reductively methylated hen egg-white lysozyme. Gerken TA; Jentoft JE; Jentoft N; Dearborn DG J Biol Chem; 1982 Mar; 257(6):2894-900. PubMed ID: 7061454 [TBL] [Abstract][Full Text] [Related]
7. 13C-NMR spectral study of reductively [13C]methylated glycophorin B. Carter RD; Brooks JR; Dill K Biochim Biophys Acta; 1984 Nov; 790(3):285-7. PubMed ID: 6487642 [TBL] [Abstract][Full Text] [Related]
8. Differences in lysine pKa values may be used to improve NMR signal dispersion in reductively methylated proteins. Abraham SJ; Kobayashi T; Solaro RJ; Gaponenko V J Biomol NMR; 2009 Apr; 43(4):239-46. PubMed ID: 19280122 [TBL] [Abstract][Full Text] [Related]
9. 15N- and 1H-NMR investigations of the active-site amino acids in semisynthetic RNase S' and RNase A. Knoblauch H; Rüterjans H; Bloemhoff W; Kerling KE Eur J Biochem; 1988 Mar; 172(2):485-97. PubMed ID: 2832166 [TBL] [Abstract][Full Text] [Related]
10. Determination of the rotational dynamics and pH dependence of the hydrogen exchange rates of the arginine guanidino group using NMR spectroscopy. Henry GD; Sykes BD J Biomol NMR; 1995 Jul; 6(1):59-66. PubMed ID: 22911578 [TBL] [Abstract][Full Text] [Related]
11. A proposed proton shuttle mechanism for saccharopine dehydrogenase from Saccharomyces cerevisiae. Xu H; Alguindigue SS; West AH; Cook PF Biochemistry; 2007 Jan; 46(3):871-82. PubMed ID: 17223709 [TBL] [Abstract][Full Text] [Related]
12. Equilibria and kinetics of N-hydroxymethylamine formation from aromatic exocyclic amines and formaldehyde. Effects of nucleophilicity and catalyst strength upon mechanisms of catalysis of carbinolamine formation¹. Abrams WR; Kallen RG J Am Chem Soc; 1976 Nov; 98(24):7777-89. PubMed ID: 23320306 [TBL] [Abstract][Full Text] [Related]
13. N-carboxymethanofuran (carbamate) formation from methanofuran and CO2 in methanogenic archaea. Thermodynamics and kinetics of the spontaneous reaction. Bartoschek S; Vorholt JA; Thauer RK; Geierstanger BH; Griesinger C Eur J Biochem; 2000 Jun; 267(11):3130-8. PubMed ID: 10824097 [TBL] [Abstract][Full Text] [Related]
14. Binding of (6R,S)-methyltetrahydrofolate to methyltransferase from Clostridium thermoaceticum: role of protonation of methyltetrahydrofolate in the mechanism of methyl transfer. Seravalli J; Shoemaker RK; Sudbeck MJ; Ragsdale SW Biochemistry; 1999 May; 38(18):5736-45. PubMed ID: 10231524 [TBL] [Abstract][Full Text] [Related]
15. pH dependence and structural interpretation of the reactions of Coprinus cinereus peroxidase with hydrogen peroxide, ferulic acid, and 2,2'-azinobis. Abelskov AK; Smith AT; Rasmussen CB; Dunford HB; Welinder KG Biochemistry; 1997 Aug; 36(31):9453-63. PubMed ID: 9235990 [TBL] [Abstract][Full Text] [Related]
16. Characterization of a buried neutral histidine in Bacillus circulans xylanase: internal dynamics and interaction with a bound water molecule. Connelly GP; McIntosh LP Biochemistry; 1998 Feb; 37(7):1810-8. PubMed ID: 9485306 [TBL] [Abstract][Full Text] [Related]
17. Solid state 13C and 15N NMR investigations of the N intermediate of bacteriorhodopsin. Lakshmi KV; Farrar MR; Raap J; Lugtenburg J; Griffin RG; Herzfeld J Biochemistry; 1994 Aug; 33(30):8853-7. PubMed ID: 8043572 [TBL] [Abstract][Full Text] [Related]
18. N epsilon,N epsilon-dimethyl-lysine cytochrome c as an NMR probe for lysine involvement in protein-protein complex formation. Moore GR; Cox MC; Crowe D; Osborne MJ; Rosell FI; Bujons J; Barker PD; Mauk MR; Mauk AG Biochem J; 1998 Jun; 332 ( Pt 2)(Pt 2):439-49. PubMed ID: 9601073 [TBL] [Abstract][Full Text] [Related]
19. Assignment of the side-chain 1H and 13C resonances of interleukin-1 beta using double- and triple-resonance heteronuclear three-dimensional NMR spectroscopy. Clore GM; Bax A; Driscoll PC; Wingfield PT; Gronenborn AM Biochemistry; 1990 Sep; 29(35):8172-84. PubMed ID: 2261471 [TBL] [Abstract][Full Text] [Related]