These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 6430527)

  • 41. Trabecular bone remodelling simulation considering osteocytic response to fluid-induced shear stress.
    Adachi T; Kameo Y; Hojo M
    Philos Trans A Math Phys Eng Sci; 2010 Jun; 368(1920):2669-82. PubMed ID: 20439268
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Estimation of bone permeability considering the morphology of lacuno-canalicular porosity.
    Kameo Y; Adachi T; Sato N; Hojo M
    J Mech Behav Biomed Mater; 2010 Apr; 3(3):240-8. PubMed ID: 20142108
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Bone tissue engineering: the role of interstitial fluid flow.
    Hillsley MV; Frangos JA
    Biotechnol Bioeng; 1994 Mar; 43(7):573-81. PubMed ID: 11540959
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Interstitial fluid flow within bone canaliculi and electro-chemo-mechanical features of the canalicular milieu: a multi-parametric sensitivity analysis.
    Sansalone V; Kaiser J; Naili S; Lemaire T
    Biomech Model Mechanobiol; 2013 Jun; 12(3):533-53. PubMed ID: 22869342
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Nano-microscale models of periosteocytic flow show differences in stresses imparted to cell body and processes.
    Anderson EJ; Kaliyamoorthy S; Iwan J; Alexander D; Knothe Tate ML
    Ann Biomed Eng; 2005 Jan; 33(1):52-62. PubMed ID: 15709705
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Contribution of fluid in bone extravascular matrix to strain-rate dependent stiffening of bone tissue - A poroelastic study.
    Le Pense S; Chen Y
    J Mech Behav Biomed Mater; 2017 Jan; 65():90-101. PubMed ID: 27569757
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A model for strain amplification in the actin cytoskeleton of osteocytes due to fluid drag on pericellular matrix.
    You L; Cowin SC; Schaffler MB; Weinbaum S
    J Biomech; 2001 Nov; 34(11):1375-86. PubMed ID: 11672712
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Permeability of musculoskeletal tissues and scaffolding materials: experimental results and theoretical predictions.
    Sander EA; Nauman EA
    Crit Rev Biomed Eng; 2003; 31(1-2):1-26. PubMed ID: 14964350
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fluid movement in bone: theoretical and empirical.
    Dillaman RM; Roer RD; Gay DM
    J Biomech; 1991; 24 Suppl 1():163-77. PubMed ID: 1791176
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Mechanosensitivity of osteocytes].
    Kamioka H; Yamashiro T
    Clin Calcium; 2012 May; 22(5):697-704. PubMed ID: 22549194
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Fluid exchange across single capillaries.
    Gore RW; McDonagh PF
    Annu Rev Physiol; 1980; 42():337-57. PubMed ID: 6996585
    [No Abstract]   [Full Text] [Related]  

  • 52. Biomechanical and biophysical environment of bone from the macroscopic to the pericellular and molecular level.
    Ren L; Yang P; Wang Z; Zhang J; Ding C; Shang P
    J Mech Behav Biomed Mater; 2015 Oct; 50():104-22. PubMed ID: 26119589
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Does altered blood flow to bone in microgravity impact on mechanotransduction?
    Bloomfield SA
    J Musculoskelet Neuronal Interact; 2006; 6(4):324-6. PubMed ID: 17185808
    [No Abstract]   [Full Text] [Related]  

  • 54. Impact of the porous microstructure on the overall elastic properties of the osteonal cortical bone.
    Sevostianov I; Kachanov M
    J Biomech; 2000 Jul; 33(7):881-8. PubMed ID: 10831763
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A theoretical model of circulatory interstitial fluid flow and species transport within porous cortical bone.
    Keanini RG; Roer RD; Dillaman RM
    J Biomech; 1995 Aug; 28(8):901-14. PubMed ID: 7673258
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Distribution of body fluids: local mechanisms guarding interstitial fluid volume.
    Aukland K
    J Physiol (Paris); 1984; 79(6):395-400. PubMed ID: 6399307
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of varying viscosity on two-fluid model of pulsatile blood flow through porous blood vessels: A comparative study.
    Tiwari A; Chauhan SS
    Microvasc Res; 2019 May; 123():99-110. PubMed ID: 30639139
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Poroelastic analysis of interstitial fluid flow in a single lamellar trabecula subjected to cyclic loading.
    Kameo Y; Ootao Y; Ishihara M
    Biomech Model Mechanobiol; 2016 Apr; 15(2):361-70. PubMed ID: 26081726
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Age-related changes in mouse bone permeability.
    Rodriguez-Florez N; Oyen ML; Shefelbine SJ
    J Biomech; 2014 Mar; 47(5):1110-6. PubMed ID: 24433671
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Modern poro-elastic biomechanical model of bone tissue. I. Biomechanical function of fluids in bone].
    Rogala P; Uklejewski R; StryƂa W
    Chir Narzadow Ruchu Ortop Pol; 2002; 67(3):309-16. PubMed ID: 12238403
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.