BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 6430565)

  • 1. Isolation of the putative structural gene for the lysine-arginine-cleaving endopeptidase required for processing of yeast prepro-alpha-factor.
    Julius D; Brake A; Blair L; Kunisawa R; Thorner J
    Cell; 1984 Jul; 37(3):1075-89. PubMed ID: 6430565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel aspartyl protease allowing KEX2-independent MF alpha propheromone processing in yeast.
    Egel-Mitani M; Flygenring HP; Hansen MT
    Yeast; 1990; 6(2):127-37. PubMed ID: 2183521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. KEX2 influences Candida albicans proteinase secretion and hyphal formation.
    Newport G; Agabian N
    J Biol Chem; 1997 Nov; 272(46):28954-61. PubMed ID: 9360967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shared functions in vivo of a glycosyl-phosphatidylinositol-linked aspartyl protease, Mkc7, and the proprotein processing protease Kex2 in yeast.
    Komano H; Fuller RS
    Proc Natl Acad Sci U S A; 1995 Nov; 92(23):10752-6. PubMed ID: 7479877
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of KEX2-encoded endopeptidase from yeast Saccharomyces cerevisiae.
    Mizuno K; Nakamura T; Ohshima T; Tanaka S; Matsuo H
    Biochem Biophys Res Commun; 1989 Feb; 159(1):305-11. PubMed ID: 2647083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Yeast KEX2 genes encodes an endopeptidase homologous to subtilisin-like serine proteases.
    Mizuno K; Nakamura T; Ohshima T; Tanaka S; Matsuo H
    Biochem Biophys Res Commun; 1988 Oct; 156(1):246-54. PubMed ID: 2845974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Posttranslational processing of the prohormone-cleaving Kex2 protease in the Saccharomyces cerevisiae secretory pathway.
    Wilcox CA; Fuller RS
    J Cell Biol; 1991 Oct; 115(2):297-307. PubMed ID: 1918142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient secretion in yeast based on fragments from K1 killer preprotoxin.
    Cartwright CP; Zhu YS; Tipper DJ
    Yeast; 1992 Apr; 8(4):261-72. PubMed ID: 1514325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glycosylation and processing of prepro-alpha-factor through the yeast secretory pathway.
    Julius D; Schekman R; Thorner J
    Cell; 1984 Feb; 36(2):309-18. PubMed ID: 6420074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immunolocalization of Kex2 protease identifies a putative late Golgi compartment in the yeast Saccharomyces cerevisiae.
    Redding K; Holcomb C; Fuller RS
    J Cell Biol; 1991 May; 113(3):527-38. PubMed ID: 2016334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intracellular trafficking and metabolic turnover of yeast prepro-alpha-factor-SRIF precursors in GH3 cells.
    Lee MA; Cheong KH; Shields D; Park SD; Hong SH
    Exp Mol Med; 2002 Sep; 34(4):285-93. PubMed ID: 12515394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterologous expression of human cholecystokinin in Saccharomyces cerevisiae. Evidence for a lysine-specific endopeptidase in the yeast secretory pathway.
    Rourke IJ; Johnsen AH; Din N; Petersen JG; Rehfeld JF
    J Biol Chem; 1997 Apr; 272(15):9720-7. PubMed ID: 9092503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A functional prepro-alpha-factor gene in Saccharomyces yeasts can contain three, four, or five repeats of the mature pheromone sequence.
    Brake AJ; Julius DJ; Thorner J
    Mol Cell Biol; 1983 Aug; 3(8):1440-50. PubMed ID: 6353204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An MF alpha 1-SUC2 (alpha-factor-invertase) gene fusion for study of protein localization and gene expression in yeast.
    Emr SD; Schekman R; Flessel MC; Thorner J
    Proc Natl Acad Sci U S A; 1983 Dec; 80(23):7080-4. PubMed ID: 6359161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glycosylation and structure of the yeast MF alpha 1 alpha-factor precursor is important for efficient transport through the secretory pathway.
    Caplan S; Green R; Rocco J; Kurjan J
    J Bacteriol; 1991 Jan; 173(2):627-35. PubMed ID: 1987155
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A mutant Kex2 enzyme with a C-terminal HDEL sequence releases correctly folded human insulin-like growth factor-1 from a precursor accumulated in the yeast endoplasmic reticulum.
    Chaudhuri B; Latham SE; Stephan C
    Eur J Biochem; 1992 Dec; 210(3):811-22. PubMed ID: 1483466
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Secretion of somatostatin by Saccharomyces cerevisiae. Correct proteolytic processing of pro-alpha-factor-somatostatin hybrids requires the products of the KEX2 and STE13 genes.
    Bourbonnais Y; Bolin D; Shields D
    J Biol Chem; 1988 Oct; 263(30):15342-7. PubMed ID: 2902090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specificity characterization of the α-mating factor hormone by Kex2 protease.
    Manfredi MA; Antunes AA; Jesus LO; Juliano MA; Juliano L; Judice WA
    Biochimie; 2016 Dec; 131():149-158. PubMed ID: 27720750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The expression and processing of human beta-amyloid peptide precursors in Saccharomyces cerevisiae: evidence for a novel endopeptidase in the yeast secretory system.
    Hines V; Zhang W; Ramakrishna N; Styles J; Mehta P; Kim KS; Innis M; Miller DL
    Cell Mol Biol Res; 1994; 40(4):273-84. PubMed ID: 7866429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Secretion of glycosylated human erythropoietin from yeast directed by the alpha-factor leader region.
    Elliott S; Giffin J; Suggs S; Lau EP; Banks AR
    Gene; 1989 Jun; 79(1):167-80. PubMed ID: 2673934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.