BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 6431465)

  • 1. Electroconvulsive treatment and haloperidol: effects on pre- and postsynaptic dopamine receptors in rat brain.
    Reches A; Wagner HR; Barkai AI; Jackson V; Yablonskaya-Alter E; Fahn S
    Psychopharmacology (Berl); 1984; 83(2):155-8. PubMed ID: 6431465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of chronic L-dopa administration on supersensitive pre- and postsynaptic dopaminergic receptors in rat brain.
    Reches A; Wagner HR; Jiang D; Jackson V; Fahn S
    Life Sci; 1982 Jul; 31(1):37-44. PubMed ID: 7109853
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Behavioral and biochemical aspects of neuroleptic-induced dopaminergic supersensitivity: studies with chronic clozapine and haloperidol.
    Seeger TF; Thal L; Gardner EL
    Psychopharmacology (Berl); 1982; 76(2):182-7. PubMed ID: 6805029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electroconvulsive shock and neurotransmitter receptors: implications for mechanism of action and adverse effects of electroconvulsive therapy.
    Lerer B
    Biol Psychiatry; 1984 Mar; 19(3):361-83. PubMed ID: 6144329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of chronic lithium on behavioral and biochemical indices of dopamine receptor supersensitivity in the rat.
    Pittman KJ; Jakubovic A; Fibiger HC
    Psychopharmacology (Berl); 1984; 82(4):371-7. PubMed ID: 6427831
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chronic lithium administration has no effect on haloperidol-induced supersensitivity of pre- and postsynaptic dopamine receptors in rat brain.
    Reches A; Wagner HR; Jackson V; Fahn S
    Brain Res; 1982 Aug; 246(1):172-7. PubMed ID: 6289974
    [No Abstract]   [Full Text] [Related]  

  • 7. Changes in apomorphine-induced stereotypy as a result of subacute neuroleptic treatment correlates with increased D-2 receptors, but not with increases in D-1 receptors.
    Fleminger S; Rupniak NM; Hall MD; Jenner P; Marsden CD
    Biochem Pharmacol; 1983 Oct; 32(19):2921-7. PubMed ID: 6138043
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Repeated administration of HA-966 and haloperidol to rats: similar tolerance to striatal dopamine accumulation after HA-966 challenge, but dissimilar effects on striatal [3H]spiperone binding.
    Van der Krogt JA; Van Valkenburg CF; Belfroid RD; Heerkens CB
    Eur J Pharmacol; 1988 Dec; 158(1-2):29-35. PubMed ID: 3220118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Permanent haloperidol-induced dopamine receptor up-regulation in the ovariectomized rat.
    Fields JZ; Gordon JH
    Brain Res Bull; 1991 Apr; 26(4):549-52. PubMed ID: 1831063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Presynaptic inhibition of dopamine synthesis in rat striatum: effects of chronic dopamine depletion and receptor blockade.
    Reches A; Wagner HR; Jackson-Lewis V; Fahn S
    Brain Res; 1985 Nov; 347(2):346-9. PubMed ID: 3933764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationship between dopamine receptor occupation by spiperone and acetylcholine levels in the rat striatum after long-term haloperidol treatment depends on dopamine innervation.
    Korf J; Sebens JB
    J Neurochem; 1987 Feb; 48(2):516-21. PubMed ID: 2878979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chronic ascorbate potentiates the effects of chronic haloperidol on behavioral supersensitivity but not D2 dopamine receptor binding.
    Pierce RC; Rowlett JK; Bardo MT; Rebec GV
    Neuroscience; 1991; 45(2):373-8. PubMed ID: 1762684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lithium does not interact with haloperidol in the dopaminergic pathways of the rat brain.
    Reches A; Jackson-Lewis V; Fahn S
    Psychopharmacology (Berl); 1984; 82(4):330-4. PubMed ID: 6427824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of ethanol and haloperidol on dopamine receptor (D2) density.
    Fuchs V; Coper H; Rommelspacher H
    Neuropharmacology; 1987 Aug; 26(8):1231-3. PubMed ID: 3658125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chronic treatment with clozapine, unlike haloperidol, does not induce changes in striatal D-2 receptor function in the rat.
    Rupniak NM; Hall MD; Mann S; Fleminger S; Kilpatrick G; Jenner P; Marsden CD
    Biochem Pharmacol; 1985 Aug; 34(15):2755-63. PubMed ID: 4040370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Striatal dopamine receptor supersensitivity after long-term haloperidol treatment of hypophysectomized rats.
    DeLucia R; Scavone C; Camillo MA
    Braz J Med Biol Res; 1989; 22(6):741-3. PubMed ID: 2620186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential modulation of dopamine D2 receptors by chronic haloperidol, nitrendipine, and pimozide.
    Tecott LH; Kwong LL; Uhr S; Peroutka SJ
    Biol Psychiatry; 1986 Oct; 21(12):1114-22. PubMed ID: 2428411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chronic haloperidol does not alter agonist affinity for dopamine receptors in vitro.
    Meller E; Bohmaker K; Goldstein M; Schweitzer JW; Friedhoff AJ
    Eur J Pharmacol; 1985 Mar; 109(3):389-94. PubMed ID: 3157587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reserpine-induced up-regulation of dopamine D2 receptors in the rat striatum is enhanced by denervation but not by chronic receptor blockade.
    Traub M; Reches A; Wagner HR; Fahn S
    Neurosci Lett; 1986 Oct; 70(2):245-9. PubMed ID: 2946007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chronic ganglioside treatment counteracts the biochemical signs of dopamine receptor supersensitivity induced by chronic haloperidol treatment.
    Agnati LF; Fuxe K; Benfenati F; Battistini N; Zini I; Toffano G
    Neurosci Lett; 1983 Oct; 40(3):293-7. PubMed ID: 6646502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.