These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 643164)

  • 1. Explosive motor behavior, rigidity and periaqueductal gray lesions.
    Blair R; Liran J; Cytryniak H; Shizgal P; Amit Z
    Neuropharmacology; 1978 Mar; 17(3):205-9. PubMed ID: 643164
    [No Abstract]   [Full Text] [Related]  

  • 2. Differential motor effects of intraventricular infusion of morphine and etonitazene.
    Shizgal P; Sklar LS; Brown ZW; Amit Z
    Pharmacol Biochem Behav; 1977 Jan; 6(1):17-20. PubMed ID: 15285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Naloxone's antagonism of rigidity but not explosive motor behavior: possible evidence for two types of mechanisms underlying the actions of opiates and opioids.
    Blair R; Cytryniak H; Shizgal P; Amit Z
    Behav Biol; 1978 Sep; 24(1):24-31. PubMed ID: 32867
    [No Abstract]   [Full Text] [Related]  

  • 4. Morphine analgesia: 2-way cross tolerance between systemic and intracerebral (periaqueductal gray) administrations.
    Jacquet YF; Lajtha A
    Life Sci; 1975 Oct; 17(8):1321-4. PubMed ID: 1196012
    [No Abstract]   [Full Text] [Related]  

  • 5. Opiate effects after adrenocorticotropin or beta-endorphin injection in the periaqueductal gray matter of rats.
    Jacquet YF
    Science; 1978 Sep; 201(4360):1032-4. PubMed ID: 210506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The periaqueductal gray: site of morphine analgesia and tolerance as shown by 2-way cross tolerance between systemic and intracerebral injections.
    Jacquet YF; Lajtha A
    Brain Res; 1976 Feb; 103(3):501-13. PubMed ID: 1252940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Schedule-induced narcotic ingestion.
    Leander JD; McMillan DE
    Pharmacol Rev; 1975 Dec; 27(4):475-87. PubMed ID: 4822
    [No Abstract]   [Full Text] [Related]  

  • 8. Comparison of opiate- and opioid-peptide-induced immobility.
    Browne RG; Derrington DC; Segal DS
    Life Sci; 1979 Mar; 24(10):933-41. PubMed ID: 36533
    [No Abstract]   [Full Text] [Related]  

  • 9. Paradoxical effects after microinjection of morphine in the periaqueductal gray matter in the rat.
    Jacquet YF; Lajtha A
    Science; 1974 Sep; 185(4156):1055-7. PubMed ID: 4604871
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analgesia and hyperreactivity produced by intracranial microinjections of morphine into the periaqueductal gray matter of the rat.
    Sharpe LG; Garnett JE; Cicero TJ
    Behav Biol; 1974 Jul; 11(3):303-13. PubMed ID: 4411999
    [No Abstract]   [Full Text] [Related]  

  • 11. Time-dependent disruptive effects of periaqueductal gray stimulation on development of morphine tolerance.
    Kesner RP; Priano DJ
    Behav Biol; 1977 Dec; 21(4):462-9. PubMed ID: 603472
    [No Abstract]   [Full Text] [Related]  

  • 12. Morphine and ACTH1-24: correlative behavioral excitations following micro-injections in rat periaqueductal gray.
    Jacquet YF; Wolf G
    Brain Res; 1981 Aug; 219(1):214-8. PubMed ID: 6266601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphine-induced and stimulation-produced analgesias at coincident periaqueductal central gray loci: evaluation of analgesic congruence, tolerance, and cross-tolerance.
    Lewis VA; Gebhart GF
    Exp Neurol; 1977 Dec; 57(3):934-55. PubMed ID: 923683
    [No Abstract]   [Full Text] [Related]  

  • 14. Non-stereospecific excitatory actions of morphine may be due to GABA-A receptor blockade.
    Jacquet YF; Saederup E; Squires RF
    Eur J Pharmacol; 1987 Jun; 138(2):285-8. PubMed ID: 3040434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Periaqueductal gray matter involvement in the muscimol-induced decrease of morphine antinociception.
    Zambotti F; Zonta N; Parenti M; Tommasi R; Vicentini L; Conci F; Mantegazza P
    Naunyn Schmiedebergs Arch Pharmacol; 1982 Mar; 318(4):368-9. PubMed ID: 7078669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Naloxone reversal of morphine catationia: role of caudate and periaqueductal gray.
    Wilcox RE; Levitt RA
    Pharmacol Biochem Behav; 1978 Oct; 9(4):425-8. PubMed ID: 569859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Naloxone suppression and morphine enhancement of voluntary wheel-running activity in rats.
    Sisti HM; Lewis MJ
    Pharmacol Biochem Behav; 2001; 70(2-3):359-65. PubMed ID: 11701208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lesions in nucleus reticularis gigantocellularis: effect on the antinociception produced by micro-injection of morphine and focal electrical stimulation in the periaqueductal gray matter.
    Mohrland JS; McManus DQ; Gebhart GF
    Brain Res; 1982 Jan; 231(1):143-52. PubMed ID: 6275945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Behavioral effects of morphine, levorphanol, dextrorphan and naloxone in the frog Rana pipiens.
    Pezalla PD; Stevens CW
    Pharmacol Biochem Behav; 1984 Aug; 21(2):213-7. PubMed ID: 6333037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The effect of the central gray matter in cats on pain during electric stimulation of the aqueduct].
    Spring A
    Res Exp Med (Berl); 1984; 184(1):17-28. PubMed ID: 6729252
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.