BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 6432045)

  • 1. Disaccharide uptake by brush-border membrane vesicles lacking the corresponding hydrolases.
    Brot-Laroche E; Alvarado F
    Biochim Biophys Acta; 1984 Aug; 775(2):175-81. PubMed ID: 6432045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suckling induces rapid intestinal growth and changes in brush border digestive functions of newborn pigs.
    Zhang H; Malo C; Buddington RK
    J Nutr; 1997 Mar; 127(3):418-26. PubMed ID: 9082025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intestinal disaccharidase activities in the chick.
    Siddons RC
    Biochem J; 1969 Mar; 112(1):51-9. PubMed ID: 5774506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional characterization of a novel disaccharide transporter in lobster hepatopancreas.
    Scheffler O; Ahearn GA
    J Comp Physiol B; 2017 May; 187(4):563-573. PubMed ID: 28180997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of mild malnutrition on disaccharidase activity and glucose uptake in intestinal brush border vesicles of growing monkeys.
    Rana SV; Gupta D; Vaiphei K; Bhardwaj S; Mehta SK
    Scand J Gastroenterol; 1995 May; 30(5):451-5. PubMed ID: 7638571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proximal small intestinal mucosal injury. Maintenance of glucose and glucose polymer absorption, attenuation of disaccharide absorption.
    Palacios M; Madariaga H; Heitlinger L; Lee PC; Lebenthal E
    Dig Dis Sci; 1989 Mar; 34(3):385-9. PubMed ID: 2493365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of sodium-glucose co-transporter and brush border disaccharidases in Giardia lamblia infected rat intestine.
    Mahmood S; Sodhi CP; Ganguly NK
    Indian J Biochem Biophys; 2002 Jun; 39(3):185-90. PubMed ID: 22905389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A high yield preparation of brush border membrane vesicles from organ-cultured embryonic chick jejunum: demonstration of insulin sensitivity of Na(+)-dependent D-glucose transport.
    Debiec H; Cross HS; Peterlik M
    J Nutr; 1991 Jan; 121(1):105-13. PubMed ID: 1992047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brush border disaccharidases in dog kidney and their spatial relationship to glucose transport receptors.
    Silverman M
    J Clin Invest; 1973 Oct; 52(10):2486-94. PubMed ID: 4729044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic advantage for transport into hamster intestine of glucose generated from phlorizin by brush border beta-glucosidase.
    Hanke DW; Warden DA; Evans JO; Fannin FF; Diedrich DF
    Biochim Biophys Acta; 1980 Jul; 599(2):652-63. PubMed ID: 6773568
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interpretation of disaccharide-dependent electrical potential differences in the small intestine.
    Igarashi Y; Saito Y; Himukai M; Hoshi T
    Jpn J Physiol; 1976; 26(1):79-92. PubMed ID: 957530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The mechanism of decreased Na+-dependent D-glucose transport in brush-border membrane vesicles from rabbit kidneys with experimental Fanconi syndrome.
    Orita Y; Fukuhara Y; Yanase M; Okada N; Nakanishi T; Horio M; Moriyama T; Ando A; Abe H
    Biochim Biophys Acta; 1984 Apr; 771(2):195-200. PubMed ID: 6538438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sodium-dependent transport of riboflavin in brush border membrane vesicles of rat small intestine is an electrogenic process.
    Daniel H; Rehner GI
    J Nutr; 1992 Jul; 122(7):1454-61. PubMed ID: 1619472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport and hydrolysis of disaccharides by Trichosporon cutaneum.
    Mörtberg M; Neujahr HY
    J Bacteriol; 1986 Nov; 168(2):734-8. PubMed ID: 3782022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Absorption of D-glucose by the small intestine of the human fetus (using brush border membrane vesicles of the jejunum)].
    Iioka H; Moriyama IS; Hino K; Itani Y; Ichijo M
    Nihon Sanka Fujinka Gakkai Zasshi; 1987 Mar; 39(3):347-51. PubMed ID: 3559320
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrolysis of alpha-D-glucopyranosyl-1,6-sorbitol and alpha-D-glucopyranosyl-1,6-mannitol by rat intestinal disaccharidases.
    Goda T; Takase S; Hosoya N
    J Nutr Sci Vitaminol (Tokyo); 1988 Feb; 34(1):131-40. PubMed ID: 3134527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction between dietary carbohydrates and intestinal disaccharidases in experimental diarrhea.
    Pergolizzi R; Lifshitz F; Teichberg S; Wapnir RA
    Am J Clin Nutr; 1977 Apr; 30(4):482-9. PubMed ID: 851074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intestinal brush-border membrane enzyme activities and transport functions during prenatal development of pigs.
    Buddington RK; Malo C
    J Pediatr Gastroenterol Nutr; 1996 Jul; 23(1):51-64. PubMed ID: 8811524
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transport and metabolism of trehalose in Escherichia coli and Salmonella typhimurium.
    Maréchal LR
    Arch Microbiol; 1984 Jan; 137(1):70-3. PubMed ID: 6370169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies on the transport of glucose from disaccharides by hamster small intestine in vitro. II. Characteristics of the disaccharidase-related transport system.
    Ramaswamy K; Malathi P; Caspary WF; Crane RK
    Biochim Biophys Acta; 1974 Apr; 345(1):39-48. PubMed ID: 4838205
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.