These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 6432045)

  • 41. Disaccharide hydrolysis, intestinal absorption and electrogenic properties in salmonella enterocolitis in mice.
    Madge DS
    Digestion; 1974; 11(1-2):25-38. PubMed ID: 4452423
    [No Abstract]   [Full Text] [Related]  

  • 42. Fe3+ transport by brush-border membrane vesicles isolated from normal and hypoxic mouse duodenum and ileum.
    Simpson RJ; Raja KB; Peters TJ
    Biochim Biophys Acta; 1985 Mar; 814(1):8-12. PubMed ID: 3919765
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Hydrolysis and transgalactosylation catalysed by β-galactosidase from brush border membrane vesicles isolated from pig small intestine: A study using lactulose and its mixtures with lactose or galactose as substrates.
    Julio-Gonzalez LC; Hernández-Hernández O; Javier Moreno F; Jimeno ML; Doyagüez EG; Olano A; Corzo N
    Food Res Int; 2020 Mar; 129():108811. PubMed ID: 32036892
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Chloride uptake by brush border membrane vesicles isolated from rabbit renal cortex. Coupling to proton gradients and K+ diffusion potentials.
    Warnock DG; Yee VJ
    J Clin Invest; 1981 Jan; 67(1):103-15. PubMed ID: 7451645
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of dehydration on apical Na+-H+ exchange activity and Na+-dependent sugar transport in brush-border membrane vesicles isolated from chick intestine.
    De la Horra MC; Calonge ML; Ilundáin AA
    Pflugers Arch; 1998 Jun; 436(1):112-6. PubMed ID: 9560454
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The effect of ionic strength on the lipid peroxidation of porcine intestinal brush-border membrane vesicles.
    Ohyashiki T; Koshino M; Ohta A; Mohri T
    Biochim Biophys Acta; 1985 Jan; 812(1):84-90. PubMed ID: 3967016
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Development of brush-border membrane hexose transport system in chick jejunum.
    Shehata AT; Lerner J; Miller DS
    Am J Physiol; 1981 Feb; 240(2):G102-8. PubMed ID: 7468803
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Electroneutral Na+/dicarboxylic amino acid cotransport in rat intestinal brush border membrane vesicles.
    Corcelli A; Prezioso G; Palmieri F; Storelli C
    Biochim Biophys Acta; 1982 Jul; 689(1):97-105. PubMed ID: 6125215
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effect of tannic acid on brush border disaccharidases in mammalian intestine.
    Chauhan A; Gupta S; Mahmood A
    Indian J Exp Biol; 2007 Apr; 45(4):353-8. PubMed ID: 17477307
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Insulin regulates Na+/glucose cotransporter activity in rat small intestine.
    Fujii Y; Kaizuka M; Hashida F; Maruo J; Sato E; Yasuda H; Kurokawa T; Ishibashi S
    Biochim Biophys Acta; 1991 Mar; 1063(1):90-4. PubMed ID: 2015265
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effect of genetic diabetes on enzymes of mouse intestinal brush-border membrane.
    Ramaswamy K; Flint PW
    Am J Physiol; 1980 Feb; 238(2):G114-8. PubMed ID: 7361898
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The role of brush border enzymes in tubular reabsorption of disaccharides: a microperfusion study in rat kidney.
    Silbernagl S
    Pflugers Arch; 1977 Oct; 371(1-2):141-5. PubMed ID: 339192
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Decreased transport of D-glucose and L-alanine across brush-border membrane vesicles from small intestine of rats treated with mitomycin C.
    Mizuno M; Yoshino H; Hashida M; Sezaki H
    Biochim Biophys Acta; 1987 Aug; 902(1):93-100. PubMed ID: 3111535
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Phenylalanine uptake in isolated renal brush border vesicles.
    Evers J; Murer H; Kinne R
    Biochim Biophys Acta; 1976 Apr; 426(4):598-615. PubMed ID: 1259984
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Potential-dependent D-glucose uptake by renal brush border membrane vesicles in the absence of sodium.
    Hilden S; Sacktor B
    Am J Physiol; 1982 Apr; 242(4):F340-5. PubMed ID: 7065244
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Disaccharide absorption by amphibian small intestine in vitro.
    Parsons DS; Prichard JS
    J Physiol; 1968 Nov; 199(1):137-50. PubMed ID: 5684031
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Characteristics of glutamic acid transport by rabbit intestinal brush-border membrane vesicles. Effects of Na+-, K+- and H+-gradients.
    Berteloot A
    Biochim Biophys Acta; 1984 Aug; 775(2):129-40. PubMed ID: 6147159
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dietary phenolic compounds: inhibition of Na+-dependent D-glucose uptake in rat intestinal brush border membrane vesicles.
    Welsch CA; Lachance PA; Wasserman BP
    J Nutr; 1989 Nov; 119(11):1698-704. PubMed ID: 2600675
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Intestinal metabolism and transport of alpha-disaccharide conjugates: the role of disaccharidase in the Na+/glucose cotransporter-mediated transport.
    Mizuma T; Awazu S
    Res Commun Mol Pathol Pharmacol; 1998 Apr; 100(1):43-52. PubMed ID: 9644718
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Glycodeoxycholate transport in brush border membrane vesicles isolated from rat jejunum and ileum.
    Wilson FA; Treanor LL
    Biochim Biophys Acta; 1979 Jul; 554(2):430-40. PubMed ID: 486452
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.