BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 6432532)

  • 1. Tyrosine modification of glucose dehydrogenase from Bacillus megaterium. Effect of tetranitromethane on the enzyme in the tetrameric and monomeric state.
    Fröschle M; Ulmer W; Jany KD
    Eur J Biochem; 1984 Aug; 142(3):533-40. PubMed ID: 6432532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for an essential histidine residue in glucose dehydrogenase from Bacillus megaterium and sequence analysis of the peptides labeled with bromoacetyl pyridine.
    Ulmer W; Fröschle M; Jany KD
    Eur J Biochem; 1983 Oct; 136(1):183-94. PubMed ID: 6413208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reversible pH-induced dissociation of glucose dehydrogenase from Bacillus megaterium. II. Kinetics and mechanism.
    Maurer E; Pfleiderer G
    Z Naturforsch C J Biosci; 1987; 42(7-8):907-15. PubMed ID: 2961151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complete amino acid sequence of glucose dehydrogenase from Bacillus megaterium.
    Jany KD; Ulmer W; Fröschle M; Pfleiderer G
    FEBS Lett; 1984 Jan; 165(1):6-10. PubMed ID: 6420184
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preferential nitration with tetranitromethane of a specific tyrosine residue in penicillinase from Staphylococcus aureus PCl. Evidence that the preferentially nitrated residue is not part of the active site but that loss of activity is due to intermolecular cross-linking.
    Bristow AF; Virden R
    Biochem J; 1978 Feb; 169(2):381-8. PubMed ID: 629760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An ultracentrifuge study on the self-association of glucose dehydrogenase from Bacillus megaterium.
    Schubert D; Maurer E; Boss K; Pfleiderer G
    Hoppe Seylers Z Physiol Chem; 1984 Dec; 365(12):1445-9. PubMed ID: 6441770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational and functional aspects of the reversible dissociation and denaturation of glucose dehydrogenase.
    Pauly HE; Pfleiderer G
    Biochemistry; 1977 Oct; 16(21):4599-604. PubMed ID: 20937
    [No Abstract]   [Full Text] [Related]  

  • 8. Chemical modification of human alpha 1-proteinase inhibitor by tetranitromethane. Structure-function relationship.
    Mierzwa S; Chan SK
    Biochem J; 1987 Aug; 246(1):37-42. PubMed ID: 3499901
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An integrated prediction of secondary, tertiary and quaternary structure of glucose dehydrogenase.
    Hönes J; Jany KD; Pfleiderer G; Wagner AF
    FEBS Lett; 1987 Feb; 212(2):193-8. PubMed ID: 3102279
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The modification with tetranitromethane of an essential tyrosine in the active site of pig fumarase.
    Beeckmans S; Kanarek L
    Biochim Biophys Acta; 1983 Mar; 743(3):370-8. PubMed ID: 6830817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitration of the tyrosine residues of porcine pancreatic colipase with tetranitromethane, and properties of the nitrated derivatives.
    De Caro JD; Behnke WD; Bonicel JJ; Desnuelle PA; Rovery M
    Biochim Biophys Acta; 1983 Sep; 747(3):253-62. PubMed ID: 6615844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inactivation of rat muscle 5'-adenylate aminohydrolase by tyrosine nitration with tetranitromethane.
    Ranieri-Raggi M; Bergamini C; Montali U; Raggi A
    Biochem J; 1981 Mar; 193(3):853-9. PubMed ID: 7305963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modification of human transcortin by tetranitromethane. Evidence for the implication of a tyrosine residue in cortisol binding.
    Le Gaillard F; Racadot A; Aubert JP; Dautrevaux M
    Biochimie; 1982 Feb; 64(2):153-8. PubMed ID: 7066412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amino acid sequence of the K-peptide generated by limited proteolysis of glucose dehydrogenase from Bacillus megaterium by proteinase K1.
    Jany KD; Nitsche E
    Arch Biochem Biophys; 1984 Feb; 229(1):355-8. PubMed ID: 6422850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical modification of phosphorylase b by tetranitromethane. Identification of a functional tyrosyl residue.
    Caruso C; Cacace MG; Di Prisco G
    Eur J Biochem; 1987 Aug; 166(3):547-52. PubMed ID: 3111849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Limited proteolysis of glucose dehydrogenase from Bacillus megaterium by proteinase K.
    Jany KD; Nitsche E
    Hoppe Seylers Z Physiol Chem; 1983 Jul; 364(7):839-44. PubMed ID: 6413354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical modification of tyrosine residues in active-site of human placental estradiol 17 beta-dehydrogenase by tetranitromethane.
    Inano H; Tamaoki B
    J Steroid Biochem; 1984 Apr; 20(4A):887-92. PubMed ID: 6584692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical modification of neutral protease from Bacillus subtilis var. amylosacchariticus with tetranitromethane: assignment of tyrosyl residues nitrated.
    Kobayashi R; Kanatani A; Yoshimoto T; Tsuru D
    J Biochem; 1989 Dec; 106(6):1110-3. PubMed ID: 2628428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of an essential tyrosine residue in nitroalkane oxidase by modification with tetranitromethane.
    Gadda G; Banerjee A; Fitzpatrick PF
    Biochemistry; 2000 Feb; 39(5):1162-8. PubMed ID: 10653664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anchimeric assistance in the intramolecular reaction of glucose-dehydrogenase-polyethylene glycol NAD conjugate.
    Nakamura A; Urabe I; Okada H
    J Biol Chem; 1986 Dec; 261(36):16792-4. PubMed ID: 3097012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.