These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 6432533)

  • 1. Pressure dependence of thermolysin catalysis.
    Fukuda M; Kunugi S
    Eur J Biochem; 1984 Aug; 142(3):565-70. PubMed ID: 6432533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of calcium ions in the thermostability of thermolysin and Bacillus subtilis var. amylosacchariticus neutral protease.
    Tajima M; Urabe I; Yutani K; Okada H
    Eur J Biochem; 1976 Apr; 64(1):243-7. PubMed ID: 819262
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on the formation and stability of a complex between Streptomyces proteinaceous metalloprotease inhibitor and thermolysin.
    Kunugi S; Yanagi Y; Oda K
    Eur J Biochem; 1999 Feb; 259(3):815-20. PubMed ID: 10092869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. pH and temperature dependences of thermolysin catalysis. Catalytic role of zinc-coordinated water.
    Kunugi S; Hirohara H; Ise N
    Eur J Biochem; 1982 May; 124(1):157-63. PubMed ID: 7084222
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalytic activity of thermolysin under extremes of pressure and temperature: modulation by metal ions.
    Kudryashova EV; Mozhaev VV; Balny C
    Biochim Biophys Acta; 1998 Jul; 1386(1):199-210. PubMed ID: 9675281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermolysin and Bacillus subtilis neutral protease. Conformation and stability of two homologous neutral metalloendopeptidases.
    Grandi C; Vita C; Dalzoppo D; Fontana A
    Int J Pept Protein Res; 1980 Oct; 16(4):327-38. PubMed ID: 6780484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of bound calcium ions in thermostable, proteolytic enzymes. II. Studies on thermolysin, the thermostable protease from Bacillus thermoproteolyticus.
    Voordouw G; Roche RS
    Biochemistry; 1975 Oct; 14(21):4667-73. PubMed ID: 1182109
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cloning and expression in Bacillus subtilis of the npr gene from Bacillus thermoproteolyticus Rokko coding for the thermostable metalloprotease thermolysin.
    O'Donohue MJ; Roques BP; Beaumont A
    Biochem J; 1994 Jun; 300 ( Pt 2)(Pt 2):599-603. PubMed ID: 8002967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studies on the Bacillus subtilis neutral-protease- and Bacillus thermoproteolyticus thermolysin-catalyzed hydrolysis of dipeptide substrates.
    Feder J; Schuck JM
    Biochemistry; 1970 Jul; 9(14):2784-91. PubMed ID: 4989948
    [No Abstract]   [Full Text] [Related]  

  • 10. Thermal stability of homologous neutral metalloendopeptidases in thermophilic and mesophilic bacteria: structural considerations.
    Pangburn MK; Levy PL; Walsh KA; Neurath H
    Experientia Suppl; 1976; 26():19-30. PubMed ID: 820564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The primary structure of Bacillus cereus neutral proteinase and comparison with thermolysin and Bacillus subtilis neutral proteinase.
    Sidler W; Niederer E; Suter F; Zuber H
    Biol Chem Hoppe Seyler; 1986 Jul; 367(7):643-57. PubMed ID: 3092843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contribution of the C-terminal amino acid to the stability of Bacillus subtilis neutral protease.
    Eijsink VG; Vriend G; Van Den Burg B; Venema G; Stulp BK
    Protein Eng; 1990 Oct; 4(1):99-104. PubMed ID: 2127107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermostable neutral protease resembling thermolysin derived from Bacillus brevis MIB001.
    Takii Y; Urata Y; Ueno N
    Biosci Biotechnol Biochem; 1998 May; 62(5):1028-30. PubMed ID: 9648239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activity and stability of a neutral protease from Vibrio sp. (vimelysin) in a pressure-temperature gradient.
    Ikeuchi H; Kunugi S; Oda K
    Eur J Biochem; 2000 Feb; 267(4):979-83. PubMed ID: 10672005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering of the pH-dependence of thermolysin activity as examined by site-directed mutagenesis of Asn112 located at the active site of thermolysin.
    Kusano M; Yasukawa K; Hashida Y; Inouye K
    J Biochem; 2006 Jun; 139(6):1017-23. PubMed ID: 16788052
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Analysis of the structure of Bacillus brevis neutral proteinase and its biosynthesis in Bacillus subtilis cells].
    Kaĭdalova NV; Akimkina TV; Khodova OD; Kostrov SV; Strongin AIa
    Mol Biol (Mosk); 1990; 24(5):1381-92. PubMed ID: 2127074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Grafting of a calcium-binding loop of thermolysin to Bacillus subtilis neutral protease.
    Toma S; Campagnoli S; Margarit I; Gianna R; Grandi G; Bolognesi M; De Filippis V; Fontana A
    Biochemistry; 1991 Jan; 30(1):97-106. PubMed ID: 1899021
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermostability at ultrahigh temperatures of thermolysin and a protease from a psychrotrophic Pseudomonas.
    Barach JT; Adams DM
    Biochim Biophys Acta; 1977 Dec; 485(2):417-23. PubMed ID: 411519
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence of homologous relationship between thermolysin and neutral protease A of Bacillus subtilis.
    Levy PL; Pangburn MK; Burstein Y; Ericsson LH; Neurath H; Walsh KA
    Proc Natl Acad Sci U S A; 1975 Nov; 72(11):4341-5. PubMed ID: 812093
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of bound calcium ions in thermostable, proteolytic enzymes. Separation of intrinsic and calcium ion contributions to the kinetic thermal stability.
    Voordouw G; Milo C; Roche RS
    Biochemistry; 1976 Aug; 15(17):3716-24. PubMed ID: 8092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.