These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 6432961)

  • 1. Presence of phospholipid-N-methyltransferases and base-exchange enzymes in rat central nervous system axolemma-enriched fractions.
    Hattori H; Bansal VS; Orihel D; Kanfer JN
    J Neurochem; 1984 Oct; 43(4):1018-24. PubMed ID: 6432961
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distribution of selected phospholipid modifying enzymes in rat brain microsomal subfractions prepared by density gradient zonal rotor centrifugation.
    Bansal VS; Hattori H; Orihel D; Kanfer JN
    Neurochem Res; 1985 Apr; 10(4):439-51. PubMed ID: 2987722
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Composition of axolemma-enriched fractions isolated from bovine CNS myelinated axons.
    DeVries GH; Payne W; Saul RG
    Neurochem Res; 1981 May; 6(5):521-37. PubMed ID: 7279111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Presence of base-exchange activity in rat brain nerve endings: dependence on soluble substrate concentrations and effect of cations.
    Holbrook PG; Wurtman RJ
    J Neurochem; 1988 Jan; 50(1):156-62. PubMed ID: 3121785
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lipid composition of axolemma-enriched fractions from human brains.
    DeVries GH; Zetusky WJ; Zmachinski C; Calabrese VP
    J Lipid Res; 1981 Feb; 22(2):208-16. PubMed ID: 7240954
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The base-exchange enzyme activities of sarcolemma and sarcoplasmic reticulum from rat heart.
    Hattori H; Kanfer JN
    Biochim Biophys Acta; 1985 Jul; 835(3):542-8. PubMed ID: 2990564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sphingosine and unsaturated fatty acids modulate the base exchange enzyme activities of rat brain membranes.
    Kanfer JN; McCartney D
    FEBS Lett; 1991 Oct; 291(1):63-6. PubMed ID: 1936252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and characterization of axolemma-enriched fractions from rabbit and bovine peripheral nerve.
    Yoshino JE; DeVries GH
    Neurochem Res; 1993 Mar; 18(3):297-303. PubMed ID: 8386812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of polar head group substitution on phospholipid methylation and the beta-adrenergic response in C6 glial cells.
    McKenzie RC; Gillespie CS; Brophy PJ
    Biochem J; 1985 Nov; 231(3):769-71. PubMed ID: 3000359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The presence of phospholipase D in rat central nervous system axolemma.
    DeVries GH; Chalifour RJ; Kanfer JN
    J Neurochem; 1983 Apr; 40(4):1189-91. PubMed ID: 6300326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deposition and transfer of axonally transported phospholipids in rat sciatic nerve.
    Toews AD; Armstrong R; Ray R; Gould RM; Morell P
    J Neurosci; 1988 Feb; 8(2):593-601. PubMed ID: 3339430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estradiol activates methylating enzyme(s) involved in the conversion of phosphatidylethanolamine to phosphatidylcholine in rat pituitary membranes.
    Drouva SV; LaPlante E; Leblanc P; Bechet JJ; Clauser H; Kordon C
    Endocrinology; 1986 Dec; 119(6):2611-22. PubMed ID: 3780543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation and partial characterization of rat CNS axolemma enriched fractions.
    DeVries GH; Matthieu JM; Beny M; Chicheportiche R; Lazdunski M; Dolivo M
    Brain Res; 1978 May; 147(2):339-52. PubMed ID: 206316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane-bound base-exchange reactions in animal tissues.
    Porcellati G; Gaiti A; Woelk H; De Medio GE; Brunetti M; Francescangeli E; Trovarelli G
    Adv Exp Med Biol; 1978; 101():287-99. PubMed ID: 665368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overexpression of phosphatidylethanolamine N-methyltransferase 2 in CHO-K1 cells does not attenuate the activity of the CDP-choline pathway for phosphatidylcholine biosynthesis.
    Lee MW; Bakovic M; Vance DE
    Biochem J; 1996 Dec; 320 ( Pt 3)(Pt 3):905-10. PubMed ID: 9003379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Possible involvement of the base exchange enzymes in the phospholipid metabolism in LAN-2 cells.
    Sorrentino G; Singh IN; Massarelli R; Kanfer JN; Bonavita V
    Ital J Neurol Sci; 1993 Apr; 14(3):245-9. PubMed ID: 8314679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of phosphatidylserine decarboxylase in brain phospholipid metabolism.
    Butler M; Morell P
    J Neurochem; 1983 Nov; 41(5):1445-54. PubMed ID: 6413658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationships between base-exchange reaction and the microsomal phospholipid pool in the rat brain in vitro.
    Gaiti A; Brunetti M; Woelk H; Porcellati G
    Lipids; 1976 Dec; 11(12):823-9. PubMed ID: 1011936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Age dependent changes in the methylation of rat brain phospholipids.
    Crews FT; Calderini G; Battistella A; Toffano G
    Brain Res; 1981 Dec; 229(1):256-9. PubMed ID: 6272934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The base exchange enzymes and phospholipase D of mammalian tissue.
    Kanfer JN
    Can J Biochem; 1980 Dec; 58(12):1370-80. PubMed ID: 6788354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.