These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 6433932)

  • 41. Analysis of essential carboxylic amino acid residues for catalytic activity of fungal chitosanases by site-directed mutagenesis.
    Shimosaka M; Sato K; Nishiwaki N; Miyazawa T; Okazaki M
    J Biosci Bioeng; 2005 Nov; 100(5):545-50. PubMed ID: 16384794
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Crystal structure of archaeal ribonuclease P protein aRpp29 from Archaeoglobus fulgidus.
    Sidote DJ; Heideker J; Hoffman DW
    Biochemistry; 2004 Nov; 43(44):14128-38. PubMed ID: 15518563
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A revision and confirmation of the amino acid sequence of ribonuclease T1.
    Takahashi K
    J Biochem; 1985 Sep; 98(3):815-7. PubMed ID: 3936843
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The primary structure of alanine transfer ribonucleic acid 1 from Torulopsis utilis. II. Partial digestion with ribonuclease T1 and derivation of the complete sequence.
    Takemura S; Ogawa K
    J Biochem; 1973 Aug; 74(2):323-33. PubMed ID: 4796876
    [No Abstract]   [Full Text] [Related]  

  • 45. [Stepwise synthesis of oligonucleotides. XXXIV. Preparative synthesis of trinucleoside diphosphates and longer oligoribonucleotides using immobilized ribonucleases].
    Zhenodarova SM; Smolianinova OA; Soboleva IA; Khabarova MI
    Bioorg Khim; 1987 Aug; 13(8):1023-30. PubMed ID: 3118885
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [A new isoform of intracellular RNAase of Fl2 Fusarium lateritium. Characteristics and determining the primary structure].
    Shliapnikov SV; Bezborodova SI; Chepurnova NK; Dement'ev AA
    Dokl Akad Nauk SSSR; 1989; 306(6):1496-9. PubMed ID: 2806059
    [No Abstract]   [Full Text] [Related]  

  • 47. Limits of NMR structure determination using variable target function calculations: ribonuclease T1, a case study.
    Pfeiffer S; Karimi-Nejad Y; Rüterjans H
    J Mol Biol; 1997 Feb; 266(2):400-23. PubMed ID: 9047372
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Carboxymethylation of an active site glutamic acid residue of ribonuclease F1 iodoacetate.
    Yoshida H; Hanazawa H
    Biochimie; 1989 May; 71(5):687-92. PubMed ID: 2569896
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Crystal structure at 1.8 A resolution and proposed amino acid sequence of a thermostable xylanase from Thermoascus aurantiacus.
    Natesh R; Bhanumoorthy P; Vithayathil PJ; Sekar K; Ramakumar S; Viswamitra MA
    J Mol Biol; 1999 May; 288(5):999-1012. PubMed ID: 10329194
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cloning and expression of D-lactonohydrolase cDNA from Fusarium moniliforme in Saccharomyces cerevisiae.
    Liu Z; Sun Z
    Biotechnol Lett; 2004 Dec; 26(24):1861-5. PubMed ID: 15672229
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Amino acid sequence and characterization of a rice bran ribonuclease.
    Iwama M; Ogawa Y; Yamagishi M; Itagaki T; Inokuchi N; Koyama T; Imai R; Ohgi K; Tsuji T; Irie M
    Biol Pharm Bull; 2001 Jul; 24(7):760-6. PubMed ID: 11456114
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Amino acid sequence determination of guanyl-specific ribonuclease Sa from Streptomyces aureofaciens.
    Shlyapnikov SV; Both V; Kulikov VA; Dementiev AA; Sevcík J; Zelinka J
    FEBS Lett; 1986 Dec; 209(2):335-9. PubMed ID: 3098582
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Studies on the covalent structure of eland pancreatic ribonuclease.
    Rusechen F; de Vrieze G; Gaastra W; Beintema JJ
    Biochim Biophys Acta; 1976 Apr; 427(2):719-26. PubMed ID: 1268225
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Peptide fractionation by high-performance liquid chromatography on an Asahipak GS-320 column: application to determination of the disulfide pairings in ribonuclease F1.
    Yoshida H; Naijo S
    Anal Biochem; 1986 Dec; 159(2):273-9. PubMed ID: 3103481
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Amino acid sequence of guanyl-specific ribonuclease from Penicillium chrysogenum 152A].
    Shliapnikov SV; Bezborodova SI; Kulikov VA; Iakovlev GI
    Dokl Akad Nauk SSSR; 1986; 288(5):1254-8. PubMed ID: 3089749
    [No Abstract]   [Full Text] [Related]  

  • 56. Purification and primary structure of a new guanylic acid specific ribonuclease from Pleurotus ostreatus.
    Nomura H; Inokuchi N; Kobayashi H; Koyama T; Iwama M; Ohgi K; Irie M
    J Biochem; 1994 Jul; 116(1):26-33. PubMed ID: 7798182
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Comparative biochemistry of microbial base-specific ribonucleases].
    Uchida T
    Tanpakushitsu Kakusan Koso; 1985 Jun; 30(7 Suppl):604-16. PubMed ID: 3934711
    [No Abstract]   [Full Text] [Related]  

  • 58. Preparation and properties of trypsin-digested ribonuclease T1 split at the single arginyl peptide bond.
    Tamaoki H; Sakiyama F; Narita K
    J Biochem; 1976 Mar; 79(3):579-89. PubMed ID: 820695
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Presence of a basic amino acid residue at either position 66 or 122 is a condition for enzymic activity in the ribonuclease superfamily.
    Beintema JJ
    FEBS Lett; 1989 Aug; 254(1-2):1-4. PubMed ID: 2673839
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A new affinity adsorbent for guanyloribonuclease. Guanylyl-(2'-5')-guanosine coupled to aminohexyl-Sepharose.
    Ishiwata K; Yoshida H
    J Biochem; 1978 Mar; 83(3):783-8. PubMed ID: 25271
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.