These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 6433934)
21. Catalytic cycle of the phosphatidylcholine-preferring phospholipase C from Bacillus cereus. Solvent viscosity, deuterium isotope effects, and proton inventory studies. Martin SF; Hergenrother PJ Biochemistry; 1999 Apr; 38(14):4403-8. PubMed ID: 10194360 [TBL] [Abstract][Full Text] [Related]
22. [Characteristics of kinetics of phospholipid hydrolysis by phospholipase C from Bacillus cereus. Hydrolysis of phosphatidylcholine in the presence of deoxycholate]. Voronin MV; Selishcheva AA; Vasilenko IA; Shvets VI Biokhimiia; 1990 Jan; 55(1):87-94. PubMed ID: 2111715 [TBL] [Abstract][Full Text] [Related]
23. [Characteristics of phospholipid hydrolysis kinetics by phospholipase C from Bacillus cereus. Hydrolysis of phosphatidylinositol in various aggregated states]. Selishcheva AA; Miroshnikova TA; Voronin MV; Vasilenko IA Biokhimiia; 1993 Mar; 58(3):340-7. PubMed ID: 8485222 [TBL] [Abstract][Full Text] [Related]
24. Cobalt(II) and copper(II) binding of Bacillus cereus trinuclear phospholipase C: a novel 1H NMR spectrum of a 'Tri-Cu(II)' center in protein. Epperson JD; Ming LJ J Inorg Biochem; 2001 Dec; 87(3):149-56. PubMed ID: 11730896 [TBL] [Abstract][Full Text] [Related]
25. Crystal structures of phosphate, iodide and iodate-inhibited phospholipase C from Bacillus cereus and structural investigations of the binding of reaction products and a substrate analogue. Hansen S; Hansen LK; Hough E J Mol Biol; 1992 May; 225(2):543-9. PubMed ID: 1593635 [TBL] [Abstract][Full Text] [Related]
26. Effect of pH on the active site of an Arg121Cys mutant of the metallo-beta-lactamase from Bacillus cereus: implications for the enzyme mechanism. Davies AM; Rasia RM; Vila AJ; Sutton BJ; Fabiane SM Biochemistry; 2005 Mar; 44(12):4841-9. PubMed ID: 15779910 [TBL] [Abstract][Full Text] [Related]
27. Cloning, overexpression, refolding, and purification of the nonspecific phospholipase C from Bacillus cereus. Tan CA; Hehir MJ; Roberts MF Protein Expr Purif; 1997 Aug; 10(3):365-72. PubMed ID: 9268684 [TBL] [Abstract][Full Text] [Related]
28. Phospholipase activity on N-acyl phosphatidylethanolamines is critically dependent on the N-acyl chain length. Caramelo JJ; Florin-Christensen J; Delfino JM Biochem J; 2003 Aug; 374(Pt 1):109-15. PubMed ID: 12765548 [TBL] [Abstract][Full Text] [Related]
30. Positively cooperative binding of zinc ions to Bacillus cereus 569/H/9 beta-lactamase II suggests that the binuclear enzyme is the only relevant form for catalysis. Jacquin O; Balbeur D; Damblon C; Marchot P; De Pauw E; Roberts GC; Frère JM; Matagne A J Mol Biol; 2009 Oct; 392(5):1278-91. PubMed ID: 19665032 [TBL] [Abstract][Full Text] [Related]
31. Shielding of phospholipid vesicles from phospholipase C hydrolysis by alpha-lactalbumin adsorption [proceedings]. Hanssens I; Van Cauwelaert F; Joniau M Arch Int Physiol Biochim; 1979 Feb; 87(1):183-4. PubMed ID: 92261 [No Abstract] [Full Text] [Related]
32. Chromogenic assay for phospholipase C from Bacillus cereus. Hergenrother PJ; Spaller MR; Haas MK; Martin SF Anal Biochem; 1995 Aug; 229(2):313-6. PubMed ID: 7485988 [TBL] [Abstract][Full Text] [Related]
33. The metal ion dependence of phospholipase C from Bacillus cereus. Little C; Otnåss AB Biochim Biophys Acta; 1975 Jun; 391(2):326-33. PubMed ID: 807246 [TBL] [Abstract][Full Text] [Related]
34. Effect of Co2+-substitution on the substrate specificity of phospholipase C from Bacillus cereus during attack on two membrane systems. Little C; Aakre SE; Rumsby MG; Gwarsha K Biochem J; 1982 Oct; 207(1):117-21. PubMed ID: 6817748 [TBL] [Abstract][Full Text] [Related]
35. Activation of sphingomyelinase from Bacillus cereus by Zn2+ hitherto accepted as a strong inhibitor. Fujii S; Itoh H; Yoshida A; Higashi S; Ikezawa H; Ikeda K Arch Biochem Biophys; 2005 Apr; 436(2):227-36. PubMed ID: 15797235 [TBL] [Abstract][Full Text] [Related]
36. Structural studies of thymidine kinases from Bacillus anthracis and Bacillus cereus provide insights into quaternary structure and conformational changes upon substrate binding. Kosinska U; Carnrot C; Sandrini MP; Clausen AR; Wang L; Piskur J; Eriksson S; Eklund H FEBS J; 2007 Feb; 274(3):727-37. PubMed ID: 17288553 [TBL] [Abstract][Full Text] [Related]
37. The histidine residues of phospholipase C from Bacillus cereus. Little C Biochem J; 1977 Nov; 167(2):399-404. PubMed ID: 413541 [TBL] [Abstract][Full Text] [Related]
38. A spectral study of cobalt(II)-substituted Bacillus cereus phospholipase C. Bicknell R; Hanson GR; Holmquist B; Little C Biochemistry; 1986 Jul; 25(15):4219-23. PubMed ID: 3019384 [TBL] [Abstract][Full Text] [Related]
39. Kinetic and X-ray structural studies of a mutant Escherichia coli alkaline phosphatase (His-412-->Gln) at one of the zinc binding sites. Ma L; Kantrowitz ER Biochemistry; 1996 Feb; 35(7):2394-402. PubMed ID: 8652582 [TBL] [Abstract][Full Text] [Related]
40. Investigation of metal ion binding in phosphonoacetaldehyde hydrolase identifies sequence markers for metal-activated enzymes of the HAD enzyme superfamily. Zhang G; Morais MC; Dai J; Zhang W; Dunaway-Mariano D; Allen KN Biochemistry; 2004 May; 43(17):4990-7. PubMed ID: 15109258 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]