These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
259 related articles for article (PubMed ID: 6433970)
1. Methane formation in faunated and ciliate-free cattle and its relationship with rumen volatile fatty acid proportions. Whitelaw FG; Eadie JM; Bruce LA; Shand WJ Br J Nutr; 1984 Sep; 52(2):261-75. PubMed ID: 6433970 [TBL] [Abstract][Full Text] [Related]
2. Effects of protozoa on methane production in rumen and hindgut of calves around time of weaning. Schönhusen U; Zitnan R; Kuhla S; Jentsch W; Derno M; Voigt J Arch Tierernahr; 2003 Aug; 57(4):279-95. PubMed ID: 14533867 [TBL] [Abstract][Full Text] [Related]
3. Linseed oil and DGAT1 K232A polymorphism: Effects on methane emission, energy and nitrogen metabolism, lactation performance, ruminal fermentation, and rumen microbial composition of Holstein-Friesian cows. van Gastelen S; Visker MHPW; Edwards JE; Antunes-Fernandes EC; Hettinga KA; Alferink SJJ; Hendriks WH; Bovenhuis H; Smidt H; Dijkstra J J Dairy Sci; 2017 Nov; 100(11):8939-8957. PubMed ID: 28918153 [TBL] [Abstract][Full Text] [Related]
5. Digestion of a dehydrated lucerne/barley diet (70:30) in defaunated, Isotricha-monoinoculated and mixed-fauna-inoculated rumen in sheep. Sénaud J; Jouany JP; Lassalas B; Bohatier J Reprod Nutr Dev; 1995; 35(3):249-66. PubMed ID: 7612165 [TBL] [Abstract][Full Text] [Related]
6. Changes in in vitro gas and methane production from rumen fluid from dairy cows during adaptation to feed additives in vivo. Klop G; van Laar-van Schuppen S; Pellikaan WF; Hendriks WH; Bannink A; Dijkstra J Animal; 2017 Apr; 11(4):591-599. PubMed ID: 27748233 [TBL] [Abstract][Full Text] [Related]
7. [Effect of rumen ciliates on the digestion of different carbohydrates in sheep. I.--Utilization of cell wall carbohydrates (cellulose and hemicellulose) and of starch]. Jouany JP; Senaud J Reprod Nutr Dev (1980); 1982; 22(5):735-52. PubMed ID: 6818644 [TBL] [Abstract][Full Text] [Related]
8. [Effect of rumen ciliates on the digestive utilization of various carbohydrate-rich diets and on the end-products formed in the rumen. II. Utilization of inulin, saccharose and lactose]. Jouany JP; Senaud J Reprod Nutr Dev (1980); 1983; 23(3):607-23. PubMed ID: 6412334 [TBL] [Abstract][Full Text] [Related]
9. Starch and dextrose at 2 levels of rumen-degradable protein in iso-nitrogenous diets: Effects on lactation performance, ruminal measurements, methane emission, digestibility, and nitrogen balance of dairy cows. Sun F; Aguerre MJ; Wattiaux MA J Dairy Sci; 2019 Feb; 102(2):1281-1293. PubMed ID: 30591340 [TBL] [Abstract][Full Text] [Related]
10. Effects of rare earth element lanthanum on rumen methane and volatile fatty acid production and microbial flora in vitro. Zhang TT; Zhao GY; Zheng WS; Niu WJ; Wei C; Lin SX J Anim Physiol Anim Nutr (Berl); 2015 Jun; 99(3):442-8. PubMed ID: 25263819 [TBL] [Abstract][Full Text] [Related]
11. Moderation of ruminal fermentation by ciliated protozoa in cattle fed a high-grain diet. Nagaraja TG; Towne G; Beharka AA Appl Environ Microbiol; 1992 Aug; 58(8):2410-4. PubMed ID: 1514789 [TBL] [Abstract][Full Text] [Related]
12. Effects of illite supplementation on in vitro and in vivo rumen fermentation, microbial population and methane emission of Hanwoo steers fed high concentrate diets. Biswas AA; Lee SS; Mamuad LL; Kim SH; Choi YJ; Lee C; Lee K; Bae GS; Lee SS Anim Sci J; 2018 Jan; 89(1):114-121. PubMed ID: 28960611 [TBL] [Abstract][Full Text] [Related]
13. Plant oil supplements reduce methane emissions and improve milk fatty acid composition in dairy cows fed grass silage-based diets without affecting milk yield. Bayat AR; Tapio I; Vilkki J; Shingfield KJ; Leskinen H J Dairy Sci; 2018 Feb; 101(2):1136-1151. PubMed ID: 29224879 [TBL] [Abstract][Full Text] [Related]
14. Increasing harvest maturity of whole-plant corn silage reduces methane emission of lactating dairy cows. Hatew B; Bannink A; van Laar H; de Jonge LH; Dijkstra J J Dairy Sci; 2016 Jan; 99(1):354-68. PubMed ID: 26506541 [TBL] [Abstract][Full Text] [Related]
15. Genetic parameters of plasma and ruminal volatile fatty acids in sheep fed alfalfa pellets and genetic correlations with enteric methane emissions1. Jonker A; Hickey SM; McEwan JC; Rowe SJ; Janssen PH; MacLean S; Sandoval E; Lewis S; Kjestrup H; Molano G; Agnew M; Young EA; Dodds KG; Knowler K; Pinares-Patiño CS J Anim Sci; 2019 Jul; 97(7):2711-2724. PubMed ID: 31212318 [TBL] [Abstract][Full Text] [Related]
16. The impact of divergent breed types and diets on methane emissions, rumen characteristics and performance of finishing beef cattle. Duthie CA; Haskell M; Hyslop JJ; Waterhouse A; Wallace RJ; Roehe R; Rooke JA Animal; 2017 Oct; 11(10):1762-1771. PubMed ID: 28222832 [TBL] [Abstract][Full Text] [Related]
17. Compositional mixed modeling of methane emissions and ruminal volatile fatty acids from individual cattle and multiple experiments. Palarea-Albaladejo J; Rooke JA; Nevison IM; Dewhurst RJ J Anim Sci; 2017 Jun; 95(6):2467-2480. PubMed ID: 28727067 [TBL] [Abstract][Full Text] [Related]
18. Relationship between rumen ammonia levels and the microbial population and volatile fatty acid proportions in faunated and defaunated sheep. Males JR; Purser DB Appl Microbiol; 1970 Mar; 19(3):483-90. PubMed ID: 5440173 [TBL] [Abstract][Full Text] [Related]
19. Association of aqueous hydrogen concentration with methane production in continuous cultures modulated to vary pH and solids passage rate. Wenner BA; de Souza J; Batistel F; Hackmann TJ; Yu Z; Firkins JL J Dairy Sci; 2017 Jul; 100(7):5378-5389. PubMed ID: 28456412 [TBL] [Abstract][Full Text] [Related]
20. Effects of 3-nitrooxypropanol on methane emission, digestion, and energy and nitrogen balance of lactating dairy cows. Reynolds CK; Humphries DJ; Kirton P; Kindermann M; Duval S; Steinberg W J Dairy Sci; 2014; 97(6):3777-89. PubMed ID: 24704240 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]