These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 6434525)

  • 1. Effects of cultivation gas phase on hydrogenase of the acetogen Clostridium thermoaceticum.
    Kellum R; Drake HL
    J Bacteriol; 1984 Oct; 160(1):466-9. PubMed ID: 6434525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a minimally defined medium for the acetogen Clostridium thermoaceticum.
    Lundie LL; Drake HL
    J Bacteriol; 1984 Aug; 159(2):700-3. PubMed ID: 6746575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unleashing hydrogenase activity in carbon monoxide dehydrogenase/acetyl-CoA synthase and pyruvate:ferredoxin oxidoreductase.
    Menon S; Ragsdale SW
    Biochemistry; 1996 Dec; 35(49):15814-21. PubMed ID: 8961945
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the H2- and CO-dependent chemolithotrophic potentials of the acetogens Clostridium thermoaceticum and Acetogenium kivui.
    Daniel SL; Hsu T; Dean SI; Drake HL
    J Bacteriol; 1990 Aug; 172(8):4464-71. PubMed ID: 2376565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Demonstration of hydrogenase in extracts of the homoacetate-fermenting bacterium Clostridium thermoaceticum.
    Drake HL
    J Bacteriol; 1982 May; 150(2):702-9. PubMed ID: 7040339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of a CO-dependent O-demethylating enzyme system from the acetogen Clostridium thermoaceticum.
    Wu ZR; Daniel SL; Drake HL
    J Bacteriol; 1988 Dec; 170(12):5747-50. PubMed ID: 3192514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mass-spectrometric studies of the interrelations among hydrogenase, carbon monoxide dehydrogenase, and methane-forming activities in pure and mixed cultures of Desulfovibrio vulgaris, Desulfovibrio desulfuricans, and Methanosarcina barkeri.
    Rajagopal BS; Lespinat PA; Fauque G; LeGall J; Berlier YM
    Appl Environ Microbiol; 1989 Sep; 55(9):2123-9. PubMed ID: 2508553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The mechanisms of H2 activation and CO binding by hydrogenase I and hydrogenase II of Clostridium pasteurianum.
    Adams MW
    J Biol Chem; 1987 Nov; 262(31):15054-61. PubMed ID: 2822711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of nitrate on the autotrophic metabolism of the acetogens Clostridium thermoautotrophicum and Clostridium thermoaceticum.
    Fröstl JM; Seifritz C; Drake HL
    J Bacteriol; 1996 Aug; 178(15):4597-603. PubMed ID: 8755890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EPR and electron nuclear double resonance investigation of oxidized hydrogenase II (uptake) from Clostridium pasteurianum W5. Effects of carbon monoxide binding.
    Telser J; Benecky MJ; Adams MW; Mortenson LE; Hoffman BM
    J Biol Chem; 1987 May; 262(14):6589-94. PubMed ID: 3032973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Re-examination of the metabolic potentials of the acetogens Clostridium aceticum and Clostridium formicoaceticum: chemolithoautotrophic and aromatic-dependent growth.
    Lux MF; Drake HL
    FEMS Microbiol Lett; 1992 Aug; 74(1):49-56. PubMed ID: 1516807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 2,4,6-trinitrotoluene reduction by an Fe-only hydrogenase in Clostridium acetobutylicum.
    Watrous MM; Clark S; Kutty R; Huang S; Rudolph FB; Hughes JB; Bennett GN
    Appl Environ Microbiol; 2003 Mar; 69(3):1542-7. PubMed ID: 12620841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon monoxide-dependent chemolithotrophic growth of Clostridium thermoautotrophicum.
    Savage MD; Wu ZG; Daniel SL; Lundie LL; Drake HL
    Appl Environ Microbiol; 1987 Aug; 53(8):1902-6. PubMed ID: 3116936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Levels of enzymes involved in the synthesis of acetate from CO2 in Clostridium thermoautotrophicum.
    Clark JE; Ragsdale SW; Ljungdahl LG; Wiegel J
    J Bacteriol; 1982 Jul; 151(1):507-9. PubMed ID: 6806250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Binding of exogenously added carbon monoxide at the active site of the iron-only hydrogenase (CpI) from Clostridium pasteurianum.
    Lemon BJ; Peters JW
    Biochemistry; 1999 Oct; 38(40):12969-73. PubMed ID: 10529166
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The synthesis of acetyl-CoA by Clostridium thermoaceticum from carbon dioxide, hydrogen, coenzyme A and methyltetrahydrofolate.
    Pezacka E; Wood HG
    Arch Microbiol; 1984 Jan; 137(1):63-9. PubMed ID: 6424623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Infrared studies of the CO-inhibited form of the Fe-only hydrogenase from Clostridium pasteurianum I: examination of its light sensitivity at cryogenic temperatures.
    Chen Z; Lemon BJ; Huang S; Swartz DJ; Peters JW; Bagley KA
    Biochemistry; 2002 Feb; 41(6):2036-43. PubMed ID: 11827551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An EPR and electron nuclear double resonance investigation of carbon monoxide binding to hydrogenase I (bidirectional) from Clostridium pasteurianum W5.
    Telser J; Benecky MJ; Adams MW; Mortenson LE; Hoffman BM
    J Biol Chem; 1986 Oct; 261(29):13536-41. PubMed ID: 3020036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogen metabolism of Azospirillum brasilense in nitrogen-free medium.
    Chan YK; Nelson LM; Knowles R
    Can J Microbiol; 1980 Sep; 26(9):1126-31. PubMed ID: 6257362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of an aromatic-dependent decarboxylase which provides growth-essential CO2 equivalents for the acetogenic (Wood) pathway of Clostridium thermoaceticum.
    Hsu TD; Lux MF; Drake HL
    J Bacteriol; 1990 Oct; 172(10):5901-7. PubMed ID: 2120194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.