These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 6434527)
1. Regulatory role of phosphate and other anions in transport of ADP and ATP by Rickettsia prowazekii. Winkler HH; Daugherty RM J Bacteriol; 1984 Oct; 160(1):76-9. PubMed ID: 6434527 [TBL] [Abstract][Full Text] [Related]
2. Transport of AMP by Rickettsia prowazekii. Atkinson WH; Winkler HH J Bacteriol; 1985 Jan; 161(1):32-8. PubMed ID: 3918004 [TBL] [Abstract][Full Text] [Related]
3. Study of the five Rickettsia prowazekii proteins annotated as ATP/ADP translocases (Tlc): Only Tlc1 transports ATP/ADP, while Tlc4 and Tlc5 transport other ribonucleotides. Audia JP; Winkler HH J Bacteriol; 2006 Sep; 188(17):6261-8. PubMed ID: 16923893 [TBL] [Abstract][Full Text] [Related]
11. Bound adenosine 5'-triphosphate formation, bound adenosine 5'-diphosphate and inorganic phosphate retention, and inorganic phosphate oxygen exchange by chloroplast adenosinetriphosphatase in the presence of Ca2+ or Mg2+. Wu D; Boyer PD Biochemistry; 1986 Jun; 25(11):3390-6. PubMed ID: 2873834 [TBL] [Abstract][Full Text] [Related]
12. ATP hydrolysis in ATP synthases can be differently coupled to proton transport and modulated by ADP and phosphate: a structure based model of the mechanism. D'Alessandro M; Melandri BA Biochim Biophys Acta; 2010; 1797(6-7):755-62. PubMed ID: 20230778 [TBL] [Abstract][Full Text] [Related]
13. Cysteine-scanning mutagenesis and thiol modification of the Rickettsia prowazekii ATP/ADP translocase: characterization of TMs IV-VII and IX-XII and their accessibility to the aqueous translocation pathway. Audia JP; Roberts RA; Winkler HH Biochemistry; 2006 Feb; 45(8):2648-56. PubMed ID: 16489758 [TBL] [Abstract][Full Text] [Related]
14. Lawsonia intracellularis contains a gene encoding a functional rickettsia-like ATP/ADP translocase for host exploitation. Schmitz-Esser S; Haferkamp I; Knab S; Penz T; Ast M; Kohl C; Wagner M; Horn M J Bacteriol; 2008 Sep; 190(17):5746-52. PubMed ID: 18606736 [TBL] [Abstract][Full Text] [Related]
15. Characterization of cardiac sarcoplasmic reticulum ATP-ADP phosphate exchange and phosphorylation of the calcium transport adenosine triphosphatase. Suko J; Hasselbach W Eur J Biochem; 1976 Apr; 64(1):123-30. PubMed ID: 6267 [TBL] [Abstract][Full Text] [Related]
16. Net adenine nucleotide transport in rat kidney mitochondria. Hagen T; Joyal JL; Henke W; Aprille JR Arch Biochem Biophys; 1993 Jun; 303(2):195-207. PubMed ID: 8512308 [TBL] [Abstract][Full Text] [Related]
17. S-adenosylmethionine transport in Rickettsia prowazekii. Tucker AM; Winkler HH; Driskell LO; Wood DO J Bacteriol; 2003 May; 185(10):3031-5. PubMed ID: 12730161 [TBL] [Abstract][Full Text] [Related]
18. ATP binding to the first nucleotide-binding domain of multidrug resistance protein MRP1 increases binding and hydrolysis of ATP and trapping of ADP at the second domain. Hou YX; Cui L; Riordan JR; Chang XB J Biol Chem; 2002 Feb; 277(7):5110-9. PubMed ID: 11741902 [TBL] [Abstract][Full Text] [Related]
19. Rickettsia prowazekii transports UMP and GMP, but not CMP, as building blocks for RNA synthesis. Winkler HH; Daugherty R; Hu F J Bacteriol; 1999 May; 181(10):3238-41. PubMed ID: 10322027 [TBL] [Abstract][Full Text] [Related]
20. Rickettsia prowazekii uses an sn-glycerol-3-phosphate dehydrogenase and a novel dihydroxyacetone phosphate transport system to supply triose phosphate for phospholipid biosynthesis. Frohlich KM; Roberts RA; Housley NA; Audia JP J Bacteriol; 2010 Sep; 192(17):4281-8. PubMed ID: 20581209 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]