These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 6435526)

  • 1. Conversion of glycerate to serine in intact spinach leaf peroxisomes.
    Liang Z; Yu C; Huang AH
    Arch Biochem Biophys; 1984 Sep; 233(2):393-401. PubMed ID: 6435526
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conversion of serine to glycerate in intact spinach leaf peroxisomes: role of malate dehydrogenase.
    Yu C; Huang AH
    Arch Biochem Biophys; 1986 Feb; 245(1):125-33. PubMed ID: 3080957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purification and characterization of a novel NADPH(NADH)-dependent hydroxypyruvate reductase from spinach leaves. Comparison of immunological properties of leaf hydroxypyruvate reductases.
    Kleczkowski LA; Randall DD
    Biochem J; 1988 Feb; 250(1):145-52. PubMed ID: 3281657
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein organization in the matrix of leaf peroxisomes. A multi-enzyme complex involved in photorespiratory metabolism.
    Heupel R; Heldt HW
    Eur J Biochem; 1994 Feb; 220(1):165-72. PubMed ID: 8119284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Provisions of reductant for the hydroxypyruvate to glycerate conversion in leaf peroxisomes : a critical evaluation of the proposed malate/aspartate shuttle.
    Schmitt MR; Edwards GE
    Plant Physiol; 1983 Jul; 72(3):728-34. PubMed ID: 16663075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Participation of mitochondrial metabolism in photorespiration. Reconstituted system of peroxisomes and mitochondria from spinach leaves.
    Raghavendra AS; Reumann S; Heldt HW
    Plant Physiol; 1998 Apr; 116(4):1333-7. PubMed ID: 9536050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compartmentation studies on spinach leaf peroxisomes : evidence for channeling of photorespiratory metabolites in peroxisomes devoid of intact boundary membrane.
    Heupel R; Markgraf T; Robinson DG; Heldt HW
    Plant Physiol; 1991 Jul; 96(3):971-9. PubMed ID: 16668283
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolism of glycolate and glyoxylate in intact spinach leaf peroxisomes.
    Liang Z; Huang AH
    Plant Physiol; 1983 Sep; 73(1):147-52. PubMed ID: 16663164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural, kinetic, and renaturation properties of an induced hydroxypyruvate reductase from Pseudomonas acidovorans.
    Utting JM; Kohn LD
    J Biol Chem; 1975 Jul; 250(13):5233-42. PubMed ID: 238981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of salts on D-glycerate dehydrogenase kinetic behavior.
    Coderch R; Lluis C; Bozal J
    Biochim Biophys Acta; 1979 Jan; 566(1):21-31. PubMed ID: 31939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolism and decarboxylation of glycollate and serine in leaf peroxisomes.
    Walton NJ; Butt VS
    Planta; 1981 Nov; 153(3):225-31. PubMed ID: 24276825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coenzyme specificity of mammalian liver D-glycerate dehydrogenase.
    Van Schaftingen E; Draye JP; Van Hoof F
    Eur J Biochem; 1989 Dec; 186(1-2):355-9. PubMed ID: 2689175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The metabolism of nitrilotriacetate by a pseudomonad.
    Cripps RE; Noble AS
    Biochem J; 1973 Dec; 136(4):1059-68. PubMed ID: 4362331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glycerate-oxidizing activity of glycolate oxidase from leaves of Spinacia oleracea.
    Huang JJ; Wang WJ; Ye JQ; Peng XX
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2006 Apr; 32(2):183-8. PubMed ID: 16622317
    [TBL] [Abstract][Full Text] [Related]  

  • 15. THE OXIDATION OF D- AND L-GLYCERATE BY RAT LIVER.
    DAWKINS PD; DICKENS F
    Biochem J; 1965 Feb; 94(2):353-67. PubMed ID: 14346088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glyoxylate transamination in intact leaf peroxisomes.
    Yu C; Liang Z; Huang AH
    Plant Physiol; 1984 May; 75(1):7-12. PubMed ID: 16663603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Possibility of mitochondrial-cytosolic cooperation in gluconeogenesis from serine via hydroxypyruvate.
    Kitagawa Y; Sugimoto E
    Biochim Biophys Acta; 1979 Jan; 582(2):276-82. PubMed ID: 760825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Purification and characterization of a novel NADPH(NADH)-dependent glyoxylate reductase from spinach leaves. Comparison of immunological properties of leaf glyoxylate reductase and hydroxypyruvate reductase.
    Kleczkowski LA; Randall DD; Blevins DG
    Biochem J; 1986 Nov; 239(3):653-9. PubMed ID: 3548703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of bicarbonate and oxaloacetate on malate oxidation by spinach leaf mitochondria.
    Neuburger M; Douce R
    Biochim Biophys Acta; 1980 Feb; 589(2):176-89. PubMed ID: 7356982
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Serine: glyoxylate, alanine:glyoxylate, and glutamate:glyoxylate aminotransferase reactions in peroxisomes from spinach leaves.
    Nakamura Y; Tolbert NE
    J Biol Chem; 1983 Jun; 258(12):7631-8. PubMed ID: 6408081
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.