These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 6435526)

  • 21. Oxalate as a potent and selective inhibitor of spinach (Spinacia oleracea) leaf NADPH-dependent hydroxypyruvate reductase.
    Kleczkowski LA; Randall DD; Edwards GE
    Biochem J; 1991 May; 276 ( Pt 1)(Pt 1):125-7. PubMed ID: 2039466
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tartaric acid metabolism. VII. Crystalline hydroxypyruvate reductase (D-glycerate dehydrogenase).
    Kohn LD; Jakoby WB
    J Biol Chem; 1968 May; 243(10):2494-9. PubMed ID: 4385077
    [No Abstract]   [Full Text] [Related]  

  • 23. A cytosolic pathway for the conversion of hydroxypyruvate to glycerate during photorespiration in Arabidopsis.
    Timm S; Nunes-Nesi A; Pärnik T; Morgenthal K; Wienkoop S; Keerberg O; Weckwerth W; Kleczkowski LA; Fernie AR; Bauwe H
    Plant Cell; 2008 Oct; 20(10):2848-59. PubMed ID: 18952776
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spectrophotometric Assays for Measuring Hydroxypyruvate Reductase Activity.
    Liepman AH; Jaworski M; Ramirez-Lopez C
    Methods Mol Biol; 2024; 2792():77-81. PubMed ID: 38861079
    [TBL] [Abstract][Full Text] [Related]  

  • 25. New insights into the mechanism of substrates trafficking in Glyoxylate/Hydroxypyruvate reductases.
    Lassalle L; Engilberge S; Madern D; Vauclare P; Franzetti B; Girard E
    Sci Rep; 2016 Feb; 6():20629. PubMed ID: 26865263
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 2-phosphoglycerate phosphatase and serine biosynthesis in Veillonella alcalescens.
    Pestka JJ; Delwiche EA
    Can J Microbiol; 1981 Aug; 27(8):808-14. PubMed ID: 6271379
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The mechanism of end product inhibition of serine biosynthesis. V. Mechanism of serim inhibition of phosphoglycerate dehydrogenases.
    Winicov I
    J Biol Chem; 1975 Mar; 250(5):1640-7. PubMed ID: 234462
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Flexibility of coupling and stoichiometry of ATP formation in intact chloroplasts.
    Heber U; Kirk MR
    Biochim Biophys Acta; 1975 Jan; 376(1):136-50. PubMed ID: 164902
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of Glutamate-oxaloacetate Transaminase and Malate Dehydrogenase in the Regeneration of NAD for Glycine Oxidation by Spinach leaf Mitochondria.
    Journet EP; Neuburger M; Douce R
    Plant Physiol; 1981 Mar; 67(3):467-9. PubMed ID: 16661695
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CONTROL OF GLUTAMATE OXIDATION IN BRAIN AND LIVER MITOCHONDRIAL SYSTEMS.
    BALAZS R
    Biochem J; 1965 May; 95(2):497-508. PubMed ID: 14340100
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enzymatic and mechanistic studies on the formation of N-phenylglycolohydroxamic acid from nitrosobenzene and pyruvate in spinach leaf homogenate.
    Tatsunami R; Yoshioka T
    J Agric Food Chem; 2006 Jan; 54(2):590-6. PubMed ID: 16417326
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The regulation of exogenous NAD(P)H oxidation in spinach (Spinacia oleracea) leaf mitochondria by pH and cations.
    Edman K; Ericson I; Møller IM
    Biochem J; 1985 Dec; 232(2):471-7. PubMed ID: 3937519
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The substrate specificity, kinetics, and mechanism of glycerate-3-kinase from spinach leaves.
    Kleczkowski LA; Randall DD; Zahler WL
    Arch Biochem Biophys; 1985 Jan; 236(1):185-94. PubMed ID: 2981505
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The hydroxypyruvate-reducing system in Arabidopsis: multiple enzymes for the same end.
    Timm S; Florian A; Jahnke K; Nunes-Nesi A; Fernie AR; Bauwe H
    Plant Physiol; 2011 Feb; 155(2):694-705. PubMed ID: 21205613
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Capacity of the malate/oxaloacetate shuttle for transfer of reducing equivalents across the envelope of leaf chloroplasts.
    Giersch C
    Arch Biochem Biophys; 1982 Dec; 219(2):379-87. PubMed ID: 7165309
    [No Abstract]   [Full Text] [Related]  

  • 36. Purification and characterization of hydroxypyruvate reductase from the facultative methylotroph Methylobacterium extorquens AM1.
    Chistoserdova LV; Lidstrom ME
    J Bacteriol; 1991 Nov; 173(22):7228-32. PubMed ID: 1657886
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Distribution studies of glycine and serine enzymes in chicks.
    Coon CN; Couch JR
    Poult Sci; 1975 Jan; 54(1):116-8. PubMed ID: 166363
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Purification and characterization of hydroxypyruvate reductase from a serine-producing methylotroph, Hyphomicrobium methylovorum GM2.
    Izumi Y; Yoshida T; Kanzaki H; Toki S; Miyazaki SS; Yamada H
    Eur J Biochem; 1990 Jun; 190(2):279-84. PubMed ID: 2114287
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enzymes of serine and glycine metabolism in leaves and non-photosynthetic tissues of Pisum sativum L.
    Walton NJ; Woolhouse HW
    Planta; 1986 Jan; 167(1):119-28. PubMed ID: 24241741
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The kinetic properties of spinach leaf glyoxylic acid reductase.
    Kohn LD; Warren WA
    J Biol Chem; 1970 Aug; 245(15):3831-9. PubMed ID: 4395378
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.