These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 6436237)

  • 1. Characterization of phosphate:hexose 6-phosphate antiport in membrane vesicles of Streptococcus lactis.
    Ambudkar SV; Maloney PC
    J Biol Chem; 1984 Oct; 259(20):12576-85. PubMed ID: 6436237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variable stoichiometry of phosphate-linked anion exchange in Streptococcus lactis: implications for the mechanism of sugar phosphate transport by bacteria.
    Ambudkar SV; Sonna LA; Maloney PC
    Proc Natl Acad Sci U S A; 1986 Jan; 83(2):280-4. PubMed ID: 3001731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphate/hexose 6-phosphate antiport in Streptococcus lactis.
    Maloney PC; Ambudkar SV; Thomas J; Schiller L
    J Bacteriol; 1984 Apr; 158(1):238-45. PubMed ID: 6325388
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anion exchange in bacteria: reconstitution of phosphate: hexose 6-phosphate antiport from Streptococcus lactis.
    Ambudkar SV; Maloney PC
    Methods Enzymol; 1986; 125():558-63. PubMed ID: 3086669
    [No Abstract]   [Full Text] [Related]  

  • 5. Bacterial anion exchange. Use of osmolytes during solubilization and reconstitution of phosphate-linked antiport from Streptococcus lactis.
    Ambudkar SV; Maloney PC
    J Biol Chem; 1986 Aug; 261(22):10079-86. PubMed ID: 3090028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and functional reconstitution of phosphate: sugar phosphate antiport of Staphylococcus aureus.
    Sonna LA; Maloney PC
    J Membr Biol; 1988 Mar; 101(3):267-74. PubMed ID: 2838636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconstitution of phosphate-linked antiport from Streptococcus lactis.
    Ambudkar SV; Maloney PC
    Biochem Biophys Res Commun; 1985 Jun; 129(2):568-75. PubMed ID: 2990460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconstitution of sugar phosphate transport systems of Escherichia coli.
    Ambudkar SV; Larson TJ; Maloney PC
    J Biol Chem; 1986 Jul; 261(20):9083-6. PubMed ID: 3522583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconstitution of the phosphoglycerate transport protein of Salmonella typhimurium.
    Varadhachary A; Maloney PC
    J Biol Chem; 1991 Jan; 266(1):130-5. PubMed ID: 1985888
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intracellular hexose-6-phosphate:phosphohydrolase from Streptococcus lactis: purification, properties, and function.
    Thompson J; Chassy BM
    J Bacteriol; 1983 Oct; 156(1):70-80. PubMed ID: 6311807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anion exchange in bacteria. Variable stoichiometry of phosphate: sugar 6-phosphate antiport.
    Maloney PC; Ambudkar SV
    Ann N Y Acad Sci; 1985; 456():245-7. PubMed ID: 3937469
    [No Abstract]   [Full Text] [Related]  

  • 12. Dependence of Streptococcus lactis phosphate transport on internal phosphate concentration and internal pH.
    Poolman B; Nijssen RM; Konings WN
    J Bacteriol; 1987 Dec; 169(12):5373-8. PubMed ID: 3119562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of 2-deoxyglucose phosphate accumulation in Lactococcus lactis vesicles by metabolite-activated, ATP-dependent phosphorylation of serine-46 in HPr of the phosphotransferase system.
    Ye JJ; Reizer J; Saier MH
    Microbiology (Reading); 1994 Dec; 140 ( Pt 12)():3421-9. PubMed ID: 7881559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The mechanism of glucose 6-phosphate transport by Escherichia coli.
    Sonna LA; Ambudkar SV; Maloney PC
    J Biol Chem; 1988 May; 263(14):6625-30. PubMed ID: 3283129
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transport of C4-dicarboxylates by anaerobically grown Escherichia coli. Energetics and mechanism of exchange, uptake and efflux.
    Engel P; Krämer R; Unden G
    Eur J Biochem; 1994 Jun; 222(2):605-14. PubMed ID: 8020497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic mechanism and specificity of the arginine-ornithine antiporter of Lactococcus lactis.
    Driessen AJ; Molenaar D; Konings WN
    J Biol Chem; 1989 Jun; 264(18):10361-70. PubMed ID: 2499577
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Respiration-coupled calcium transport by membrane vesicles from Azotobacter vinelandii.
    Barnes EM; Roberts RR; Bhattacharyya P
    Membr Biochem; 1978; 1(1-2):73-88. PubMed ID: 116111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glucose metabolism and internal pH of Lactococcus lactis subsp. lactis cells utilizing NMR spectroscopy.
    Foucaud C; Herve M; Neumann JM; Hemme D
    Lett Appl Microbiol; 1995 Jul; 21(1):10-3. PubMed ID: 7662330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification and characterization of a small membrane-associated sugar phosphate phosphatase that is allosterically activated by HPr(Ser(P)) of the phosphotransferase system in Lactococcus lactis.
    Ye JJ; Saier MH
    J Biol Chem; 1995 Jul; 270(28):16740-4. PubMed ID: 7622485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of arginine-ornithine exchange and the arginine deiminase pathway in Streptococcus lactis.
    Poolman B; Driessen AJ; Konings WN
    J Bacteriol; 1987 Dec; 169(12):5597-604. PubMed ID: 3119567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.