BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 6436479)

  • 1. Calcium-dependent after-potentials in visceral afferent neurones of the rabbit.
    Higashi H; Morita K; North RA
    J Physiol; 1984 Oct; 355():479-92. PubMed ID: 6436479
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 5-Hydroxytryptamine receptors of visceral primary afferent neurones on rabbit nodose ganglia.
    Higashi H; Nishi S
    J Physiol; 1982 Feb; 323():543-67. PubMed ID: 7097585
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ouabain augments calcium-dependent potassium conductance in visceral primary afferent neurones of the rabbit.
    Higashi H; Katayama Y; Morita K; North RA
    J Physiol; 1987 Aug; 389():629-45. PubMed ID: 2445981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of calcium-dependent spike after-hyperpolarization increases excitability of rabbit visceral sensory neurones.
    Weinreich D; Wonderlin WF
    J Physiol; 1987 Dec; 394():415-27. PubMed ID: 3481834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two calcium-sensitive spike after-hyperpolarizations in visceral sensory neurones of the rabbit.
    Fowler JC; Greene R; Weinreich D
    J Physiol; 1985 Aug; 365():59-75. PubMed ID: 4040969
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for initiation of calcium spikes in C-cells of the rabbit nodose ganglion.
    Ito H
    Pflugers Arch; 1982 Aug; 394(2):106-12. PubMed ID: 7122216
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Persistent calcium-sensitive potassium current and the resting properties of guinea-pig myenteric neurones.
    North RA; Tokimasa T
    J Physiol; 1987 May; 386():333-53. PubMed ID: 2445964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ca2+-induced Ca2+ release mediates a slow post-spike hyperpolarization in rabbit vagal afferent neurons.
    Moore KA; Cohen AS; Kao JP; Weinreich D
    J Neurophysiol; 1998 Feb; 79(2):688-94. PubMed ID: 9463432
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inactivation of calcium conductance characterized by tail current measurements in neurones of Aplysia californica.
    Eckert R; Ewald D
    J Physiol; 1983 Dec; 345():549-65. PubMed ID: 6420549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium-activated inward spike after-currents in bursting neurone R15 of Aplysia.
    Lewis DV
    J Physiol; 1988 Jan; 395():285-302. PubMed ID: 2457678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Histamine H1 receptor activation blocks two classes of potassium current, IK(rest) and IAHP, to excite ferret vagal afferents.
    Jafri MS; Moore KA; Taylor GE; Weinreich D
    J Physiol; 1997 Sep; 503 ( Pt 3)(Pt 3):533-46. PubMed ID: 9379409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The ionic basis of action potentials in petrosal ganglion cells of the cat.
    Gallego R
    J Physiol; 1983 Sep; 342():591-602. PubMed ID: 6631750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intracellular studies of the electrophysiological properties of cultured intracardiac neurones of the guinea-pig.
    Allen TG; Burnstock G
    J Physiol; 1987 Jul; 388():349-66. PubMed ID: 3656196
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of calcium influx and buffering in the kinetics of Ca(2+)-activated K+ current in rat vagal motoneurons.
    Sah P
    J Neurophysiol; 1992 Dec; 68(6):2237-47. PubMed ID: 1491269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of hypoxia on rat hippocampal neurones in vitro.
    Fujiwara N; Higashi H; Shimoji K; Yoshimura M
    J Physiol; 1987 Mar; 384():131-51. PubMed ID: 2443657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ionic basis of the differential neuronal activity of guinea-pig septal nucleus studied in vitro.
    Alvarez de Toledo G; López-Barneo J
    J Physiol; 1988 Feb; 396():399-415. PubMed ID: 2457690
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of passive and active electrophysiologic properties of neurons in mammalian nodose ganglia maintained in vitro.
    Jaffe RA; Sampson SR
    J Neurophysiol; 1976 Jul; 39(4):802-15. PubMed ID: 9491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noradrenaline hyperpolarization and depolarization in cat vesical parasympathetic neurones.
    Akasu T; Gallagher JP; Nakamura T; Shinnick-Gallagher P; Yoshimura M
    J Physiol; 1985 Apr; 361():165-84. PubMed ID: 2580974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium regulation of a slow post-spike hyperpolarization in vagal afferent neurons.
    Cordoba-Rodriguez R; Moore KA; Kao JP; Weinreich D
    Proc Natl Acad Sci U S A; 1999 Jul; 96(14):7650-7. PubMed ID: 10393875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and brain-stem projections of aortic baroreceptor afferent neurones in nodose ganglia of cats and rabbits.
    Donoghue S; Garcia M; Jordan D; Spyer KM
    J Physiol; 1982 Jan; 322():337-52. PubMed ID: 7069619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.