These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 6437152)

  • 1. Utilization of xylose by bacteria, yeasts, and fungi.
    Jeffries TW
    Adv Biochem Eng Biotechnol; 1983; 27():1-32. PubMed ID: 6437152
    [No Abstract]   [Full Text] [Related]  

  • 2. Bioconversion of hemicellulosics.
    Magee RJ; Kosaric N
    Adv Biochem Eng Biotechnol; 1985; 32():61-93. PubMed ID: 2932894
    [No Abstract]   [Full Text] [Related]  

  • 3. Xylan-degrading activity in yeasts: growth on xylose, xylan and hemicelluloses.
    Biely P; Krátký Z; Kocková-Kratochvílová A; Bauer S
    Folia Microbiol (Praha); 1978; 23(5):366-71. PubMed ID: 700524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arbinose utilization by xylose-fermenting yeasts and fungi.
    McMillan JD; Boynton BL
    Appl Biochem Biotechnol; 1994; 45-46():569-84. PubMed ID: 8010769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic engineering applications to renewable resource utilization.
    Aristidou A; Penttilä M
    Curr Opin Biotechnol; 2000 Apr; 11(2):187-98. PubMed ID: 10753763
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ethanolic fermentation of pentoses in lignocellulose hydrolysates.
    Hahn-Hägerdal B; Lindén T; Senac T; Skoog K
    Appl Biochem Biotechnol; 1991; 28-29():131-44. PubMed ID: 1929360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [The utilization of monosaccharides, polysaccharides and lignous substances by a strain of cellulolytic microorganism].
    ROULET MA
    Experientia; 1953 Dec; 9(12):460-1. PubMed ID: 13127860
    [No Abstract]   [Full Text] [Related]  

  • 8. Ethanol fermentation from biomass resources: current state and prospects.
    Lin Y; Tanaka S
    Appl Microbiol Biotechnol; 2006 Feb; 69(6):627-42. PubMed ID: 16331454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Metabolic engineering for microbial production of ethanol from xylose: a review].
    Zhang Y; Ma R; Hong H; Zhang W; Chen M; Lu W
    Sheng Wu Gong Cheng Xue Bao; 2010 Oct; 26(10):1436-43. PubMed ID: 21218632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview.
    Pérez J; Muñoz-Dorado J; de la Rubia T; Martínez J
    Int Microbiol; 2002 Jun; 5(2):53-63. PubMed ID: 12180781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation and Characterization of Novel Lignolytic, Cellulolytic, and Hemicellulolytic Bacteria from Wood-Feeding Termite Cryptotermes brevis.
    Tsegaye B; Balomajumder C; Roy P
    Int Microbiol; 2019 Mar; 22(1):29-39. PubMed ID: 30810928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lignin: biosynthesis, application, and biodegradation.
    Janshekar H; Fiechter A
    Adv Biochem Eng Biotechnol; 1983; 27():119-78. PubMed ID: 6437154
    [No Abstract]   [Full Text] [Related]  

  • 13. Bacterial biodegradation and bioconversion of industrial lignocellulosic streams.
    Mathews SL; Pawlak J; Grunden AM
    Appl Microbiol Biotechnol; 2015 Apr; 99(7):2939-54. PubMed ID: 25722022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation and characterization of xylose- and xylan-utilizing anaerobic bacteria.
    Murty MV; Chandra TS
    Antonie Van Leeuwenhoek; 1989; 55(2):153-63. PubMed ID: 2742371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes of microbial population structure related to lignin degradation during lignocellulosic waste composting.
    Huang DL; Zeng GM; Feng CL; Hu S; Lai C; Zhao MH; Su FF; Tang L; Liu HL
    Bioresour Technol; 2010 Jun; 101(11):4062-7. PubMed ID: 20122824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Mycelial growth and the rate of xylan, xylose and glucose consumption by strains of different species of fungi].
    Bilaĭ VI; Strizhevskaia AIa
    Mikrobiol Zh; 1977; 39(3):307-10. PubMed ID: 895572
    [No Abstract]   [Full Text] [Related]  

  • 17. [Metabolic engineering of the initial stages of xylose catabolism in yeasts for construction of efficient producers of ethanol from lignocelluloses].
    Dmytruk OV; Dmytruk KV; Voronovs'kyĭ AIa; Sybirnyĭ AA
    Tsitol Genet; 2008; 42(2):70-84. PubMed ID: 18630124
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic Engineering for Improved Fermentation of L-Arabinose.
    Ye S; Kim JW; Kim SR
    J Microbiol Biotechnol; 2019 Mar; 29(3):339-346. PubMed ID: 30786700
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioconversion of lignocellulosic biomass to xylitol: An overview.
    Venkateswar Rao L; Goli JK; Gentela J; Koti S
    Bioresour Technol; 2016 Aug; 213():299-310. PubMed ID: 27142629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Everyone loves an underdog: metabolic engineering of the xylose oxidative pathway in recombinant microorganisms.
    Valdehuesa KNG; Ramos KRM; Nisola GM; Bañares AB; Cabulong RB; Lee WK; Liu H; Chung WJ
    Appl Microbiol Biotechnol; 2018 Sep; 102(18):7703-7716. PubMed ID: 30003296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.