These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
95 related articles for article (PubMed ID: 6437409)
1. Effects of mitomycin C on metabolism in a rat liver preparation. Kimpel DL; Sagone AL Biochem Pharmacol; 1984 Nov; 33(21):3479-84. PubMed ID: 6437409 [TBL] [Abstract][Full Text] [Related]
2. One-electron reduction of mitomycin c by rat liver: role of cytochrome P-450 and NADPH-cytochrome P-450 reductase. Vromans RM; van de Straat R; Groeneveld M; Vermeulen NP Xenobiotica; 1990 Sep; 20(9):967-78. PubMed ID: 2122607 [TBL] [Abstract][Full Text] [Related]
3. The effect of sodium azide on the chemiluminescence of granulocytes--evidence for the generation of multiple oxygen radicals. Sagone AL; Mendelson DS; Metz EN J Lab Clin Med; 1977 Jun; 89(6):1333-40. PubMed ID: 194005 [TBL] [Abstract][Full Text] [Related]
4. Similar activities of nerve growth factor and its homologue proinsulin in intracellular hydrogen peroxide production and metabolism in adipocytes. Transmembrane signalling relative to insulin-mimicking cellular effects. Mukherjee SP; Mukherjee C Biochem Pharmacol; 1982 Oct; 31(20):3163-72. PubMed ID: 7150345 [TBL] [Abstract][Full Text] [Related]
5. Reductive metabolism and alkylating activity of mitomycin C induced by rat liver microsomes. Tomasz M; Lipman R Biochemistry; 1981 Aug; 20(17):5056-61. PubMed ID: 6794605 [TBL] [Abstract][Full Text] [Related]
6. Role of catalase and hydroxyl radicals in the oxidation of methanol by rat liver microsomes. Cederbaum AI; Qureshi A Biochem Pharmacol; 1982 Feb; 31(3):329-35. PubMed ID: 6280725 [TBL] [Abstract][Full Text] [Related]
7. Studies on the in vitro interaction of mitomycin C, nitrofurantoin and paraquat with pulmonary microsomes. Stimulation of reactive oxygen-dependent lipid peroxidation. Trush MA; Mimnaugh EG; Ginsburg E; Gram TE Biochem Pharmacol; 1982 Mar; 31(5):805-14. PubMed ID: 7082349 [TBL] [Abstract][Full Text] [Related]
8. Metabolic activation of mitomycin C by liver microsomes and nuclei. Kennedy KA; Sligar SG; Polomski L; Sartorelli AC Biochem Pharmacol; 1982 Jun; 31(11):2011-6. PubMed ID: 6810899 [TBL] [Abstract][Full Text] [Related]
9. Role of NADPH:cytochrome c reductase and DT-diaphorase in the biotransformation of mitomycin C1. Keyes SR; Fracasso PM; Heimbrook DC; Rockwell S; Sligar SG; Sartorelli AC Cancer Res; 1984 Dec; 44(12 Pt 1):5638-43. PubMed ID: 6437671 [TBL] [Abstract][Full Text] [Related]
10. The response of red cell hexose monophosphate shunt after sulfhydryl inhibition. Sagone AL; Balcerzak SP; Metz EN Blood; 1975 Jan; 45(1):49-54. PubMed ID: 803110 [TBL] [Abstract][Full Text] [Related]
11. Relation between hepatic microsomal metabolism of N-nitrosamines and cytochrome P-450 species. Kawanishi T; Ohno Y; Takahashi A; Takanaka A; Kasuya Y; Omori Y Biochem Pharmacol; 1985 Apr; 34(7):919-24. PubMed ID: 3985997 [TBL] [Abstract][Full Text] [Related]
12. Hexose monophosphate shunt activities in human erythrocytes during oxidative damage induced by hydrogen peroxide. Guitton J; Servanin S; Francina A Arch Toxicol; 2003 Jul; 77(7):410-7. PubMed ID: 12851742 [TBL] [Abstract][Full Text] [Related]
13. Hypoxia increases glutathione redox cycle and protects rat lungs against oxidants. White CW; Jackson JH; McMurtry IF; Repine JE J Appl Physiol (1985); 1988 Dec; 65(6):2607-16. PubMed ID: 3215862 [TBL] [Abstract][Full Text] [Related]
14. Nitroheterocycle metabolism in mammalian cells. Stimulation of the hexose monophosphate shunt. Varnes ME; Tuttle SW; Biaglow JE Biochem Pharmacol; 1984 May; 33(10):1671-7. PubMed ID: 6428413 [TBL] [Abstract][Full Text] [Related]
15. The effects of the quinone type drugs on hydroxyl radical (OH.) production by rat liver microsomes. Tobia AJ; Couri D; Sagone A J Toxicol Environ Health; 1985; 15(2):265-77. PubMed ID: 3925152 [TBL] [Abstract][Full Text] [Related]
16. Modification of the metabolism and cytotoxicity of bioreductive alkylating agents by dicoumarol in aerobic and hypoxic murine tumor cells. Keyes SR; Rockwell S; Sartorelli AC Cancer Res; 1989 Jun; 49(12):3310-3. PubMed ID: 2470504 [TBL] [Abstract][Full Text] [Related]
17. Effects of glutathione and ethylxanthate on mitomycin C activation by isolated rat hepatic or EMT6 mouse mammary tumor nuclei. Kennedy KA; Mimnaugh EG; Trush MA; Sinha BK Cancer Res; 1985 Sep; 45(9):4071-6. PubMed ID: 2411396 [TBL] [Abstract][Full Text] [Related]
18. Pulmonary and hepatic fatty acid synthesis. III. Control of hexose monophosphate shunt pathway by 3,5,3'-L-triiodothyronine. Das DK; Neogi A Ann Nutr Metab; 1984; 28(6):357-66. PubMed ID: 6517528 [TBL] [Abstract][Full Text] [Related]
19. Contrasting molecular cytotoxic mechanisms of mitomycin C and its two analogs, BMY 25282 and BMY 25067, in isolated rat hepatocytes. Silva JM; Khan S; O'Brien PJ Biochem Pharmacol; 1993 Jun; 45(11):2303-9. PubMed ID: 8517871 [TBL] [Abstract][Full Text] [Related]
20. Metabolism of glucose into glutamate via the hexose monophosphate shunt and its inhibition by 6-aminonicotinamide in rat brain in vivo. Gaitonde MK; Jones J; Evans G Proc R Soc Lond B Biol Sci; 1987 Jun; 231(1262):71-90. PubMed ID: 2888118 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]