These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Deoxyguanosine nucleotide analogues: potent stimulators of microtubule nucleation with reduced affinity for the exchangeable nucleotide site of tubulin. Hamel E; Lustbader J; Lin CM Biochemistry; 1984 Oct; 23(22):5314-25. PubMed ID: 6509023 [TBL] [Abstract][Full Text] [Related]
6. Serotherapy of primary rat mammary carcinoma: inhibition by ethylenedinitrilotetraacetic acid but not by [ethylenebis(oxyethylenenitrilo)]tetraacetic acid. Nakanishi K; Zbar B; Borsos T; Glenn G Cancer Res; 1986 Aug; 46(8):3886-90. PubMed ID: 3089581 [TBL] [Abstract][Full Text] [Related]
7. Traces of brain microtubule-associated proteins affect dynamic properties of microtubules. Keates RA Biochem Cell Biol; 1990 Oct; 68(10):1202-9. PubMed ID: 2268415 [TBL] [Abstract][Full Text] [Related]
8. Inhibition of microtubule polymerization by the tubulin-colchicine complex: inhibition of spontaneous assembly. Keates RA; Mason GB Can J Biochem; 1981 May; 59(5):361-70. PubMed ID: 7260726 [TBL] [Abstract][Full Text] [Related]
9. Effects of heavy metal cations, sulfhydryl reagents and other chemical agents on striatal D2 dopamine receptors. Scheuhammer AM; Cherian MG Biochem Pharmacol; 1985 Oct; 34(19):3405-13. PubMed ID: 3931643 [TBL] [Abstract][Full Text] [Related]
11. Unique functional characteristics of the polymerization and MAP binding regulatory domains of plant tubulin. Hugdahl JD; Bokros CL; Hanesworth VR; Aalund GR; Morejohn LC Plant Cell; 1993 Sep; 5(9):1063-80. PubMed ID: 8104575 [TBL] [Abstract][Full Text] [Related]
12. Kinetic analysis of tubulin exchange at microtubule ends at low vinblastine concentrations. Jordan MA; Wilson L Biochemistry; 1990 Mar; 29(11):2730-9. PubMed ID: 2346745 [TBL] [Abstract][Full Text] [Related]
13. Peroxynitrite oxidation of tubulin sulfhydryls inhibits microtubule polymerization. Landino LM; Hasan R; McGaw A; Cooley S; Smith AW; Masselam K; Kim G Arch Biochem Biophys; 2002 Feb; 398(2):213-20. PubMed ID: 11831852 [TBL] [Abstract][Full Text] [Related]
14. The effects of methyl mercury binding to microtubules. Vogel DG; Margolis RL; Mottet NK Toxicol Appl Pharmacol; 1985 Sep; 80(3):473-86. PubMed ID: 4035699 [TBL] [Abstract][Full Text] [Related]
15. Inhibition of brain tubulin-guanosine 5'-triphosphate interactions by mercury: similarity to observations in Alzheimer's diseased brain. Pendergrass JC; Haley BE Met Ions Biol Syst; 1997; 34():461-78. PubMed ID: 9046580 [No Abstract] [Full Text] [Related]
16. The effect of polyamines on tubulin assembly. Anderson PJ; Bardocz S; Campos R; Brown DL Biochem Biophys Res Commun; 1985 Oct; 132(1):147-54. PubMed ID: 4062927 [TBL] [Abstract][Full Text] [Related]
17. Highly variable effects of beryllium and beryllium fluoride on tubulin polymerization under different reaction conditions: comparison of assembly reactions dependent on microtubule-associated proteins, glycerol, dimethyl sulfoxide, and glutamate. Hamel E; Lin CM; Kenney S; Skehan P Arch Biochem Biophys; 1991 Apr; 286(1):57-69. PubMed ID: 1680309 [TBL] [Abstract][Full Text] [Related]
18. Effect of S-100 protein on assembly of brain microtubule proteins in vitro. Donato R FEBS Lett; 1983 Oct; 162(2):310-3. PubMed ID: 6414842 [TBL] [Abstract][Full Text] [Related]
19. Comparison of the inhibitory effects of mercuric chloride on cytosolic and mitochondrial hexokinase activities in rat brain, kidney and spleen. Lai JC; Barrow HN Comp Biochem Physiol C Comp Pharmacol Toxicol; 1984; 78(1):81-7. PubMed ID: 6146488 [TBL] [Abstract][Full Text] [Related]
20. Stimulation of tubulin-dependent ATPase activity in microtubule proteins from porcine brain by vinblas tine. Fujii T; Kondo Y; Kumasaka M; Ohki K J Neurochem; 1982 Dec; 39(6):1587-93. PubMed ID: 6216323 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]