These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
98 related articles for article (PubMed ID: 6437647)
21. Molecular weight dependency of heparin inhibition of microtubule assembly in vitro. Deinum J; Sörskog L; Wallin M; Dahlbäck J Biochim Biophys Acta; 1984 Nov; 802(1):41-8. PubMed ID: 6148967 [TBL] [Abstract][Full Text] [Related]
22. Carbon-13 nuclear magnetic resonance study of microtubule protein: evidence for a second colchicine site involved in the inhibition of microtubule assembly. Ringel I; Sternlicht H Biochemistry; 1984 Nov; 23(23):5644-53. PubMed ID: 6150726 [TBL] [Abstract][Full Text] [Related]
23. Mechanism of inhibition of microtubule polymerization by colchicine: inhibitory potencies of unliganded colchicine and tubulin-colchicine complexes. Skoufias DA; Wilson L Biochemistry; 1992 Jan; 31(3):738-46. PubMed ID: 1731931 [TBL] [Abstract][Full Text] [Related]
24. Calcium-induced inactivation of microtubule formation in brain extracts. Presence of a calcium-dependent protease acting on polymerization-stimulating microtubule-associated proteins. Sandoval IV; Weber K Eur J Biochem; 1978 Dec; 92(2):463-70. PubMed ID: 33047 [TBL] [Abstract][Full Text] [Related]
25. Disturbed microtubule function and induction of micronuclei by chelate complexes of mercury(II). Stoiber T; Bonacker D; Böhm KJ; Bolt HM; Thier R; Degen GH; Unger E Mutat Res; 2004 Oct; 563(2):97-106. PubMed ID: 15364276 [TBL] [Abstract][Full Text] [Related]
26. Pyruvate kinase as a microtubule destabilizing factor in vitro. Vértessy BG; Bánkfalvi D; Kovács J; Löw P; Lehotzky A; Ovádi J Biochem Biophys Res Commun; 1999 Jan; 254(2):430-5. PubMed ID: 9918855 [TBL] [Abstract][Full Text] [Related]
27. Microtubule associated proteins in microtubule preparations made with and without glycerol. Keates RA Can J Biochem Cell Biol; 1984 Sep; 62(9):803-13. PubMed ID: 6498594 [TBL] [Abstract][Full Text] [Related]
28. A rat monoclonal antibody reacting specifically with the tyrosylated form of alpha-tubulin. I. Biochemical characterization, effects on microtubule polymerization in vitro, and microtubule polymerization and organization in vivo. Wehland J; Willingham MC; Sandoval IV J Cell Biol; 1983 Nov; 97(5 Pt 1):1467-75. PubMed ID: 6415068 [TBL] [Abstract][Full Text] [Related]
29. Differential effects of magnesium on tubulin-nucleotide interactions. Huang AB; Lin CM; Hamel E Biochim Biophys Acta; 1985 Nov; 832(1):22-32. PubMed ID: 3931683 [TBL] [Abstract][Full Text] [Related]
30. Tubulin-nucleotide interactions during the polymerization and depolymerization of microtubules. Weisenberg RC; Deery WJ; Dickinson PJ Biochemistry; 1976 Sep; 15(19):4248-54. PubMed ID: 963034 [TBL] [Abstract][Full Text] [Related]
31. Effects of methylmercury and some metal ions on microtubule networks in mouse glioma cells and in vitro tubulin polymerization. Miura K; Inokawa M; Imura N Toxicol Appl Pharmacol; 1984 Apr; 73(2):218-31. PubMed ID: 6369629 [TBL] [Abstract][Full Text] [Related]
32. Effects of vanadate on the assembly and disassembly of purified tubulin. Kirazov EP; Weiss DG Cell Motil Cytoskeleton; 1986; 6(3):314-23. PubMed ID: 3638162 [TBL] [Abstract][Full Text] [Related]
33. Action of mercurials on 3H-cAMP binding to the regulatory subunit-II of cAMP-dependent protein kinase. Saijoh K; Inoue Y; Katsuyama H; Sumino K Pharmacol Toxicol; 1991 Feb; 68(2):96-9. PubMed ID: 1649471 [TBL] [Abstract][Full Text] [Related]
34. Modifications of Ca2+ signaling by inorganic mercury in PC12 cells. Rossi AD; Larsson O; Manzo L; Orrenius S; Vahter M; Berggren PO; Nicotera P FASEB J; 1993 Dec; 7(15):1507-14. PubMed ID: 8262335 [TBL] [Abstract][Full Text] [Related]
35. Ionic and nucleotide requirements for microtubule polymerization in vitro. Olmsted JB; Borisy GG Biochemistry; 1975 Jul; 14(13):2996-3005. PubMed ID: 238580 [TBL] [Abstract][Full Text] [Related]
36. Different effects of vinblastine on the polymerization of isotypically purified tubulins from bovine brain. Khan IA; Ludueña RF Invest New Drugs; 2003 Feb; 21(1):3-13. PubMed ID: 12795525 [TBL] [Abstract][Full Text] [Related]
37. Effects of inorganic mercury (Hg2+) on calcium channel currents and catecholamine release from bovine chromaffin cells. Weinsberg F; Bickmeyer U; Wiegand H Arch Toxicol; 1995; 69(3):191-6. PubMed ID: 7717876 [TBL] [Abstract][Full Text] [Related]
38. Effects of Hg2+ and CH3Hg+ on Ca2+ fluxes in rat brain microsomes. Freitas AJ; Rocha JB; Wolosker H; Souza DO Brain Res; 1996 Nov; 738(2):257-64. PubMed ID: 8955521 [TBL] [Abstract][Full Text] [Related]
39. Organization-dependent effects of toxic bivalent ions microtubule assembly and glycolysis. Liliom K; Wágner G; Pácz A; Cascante M; Kovács J; Ovádi J Eur J Biochem; 2000 Aug; 267(15):4731-9. PubMed ID: 10903506 [TBL] [Abstract][Full Text] [Related]
40. Polymerization of the tubulin-colchicine complex: relation to microtubule assembly. Andreu JM; Wagenknecht T; Timasheff SN Biochemistry; 1983 Mar; 22(7):1556-66. PubMed ID: 6849866 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]