These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 6437651)

  • 1. Role of calcium in heart metabolism.
    Bihler I
    Can J Physiol Pharmacol; 1984 Jul; 62(7):884-90. PubMed ID: 6437651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integration of glucose transport with metabolic and functional activity of heart muscle.
    Bihler I
    Adv Myocardiol; 1980; 2():3-15. PubMed ID: 6999561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of glucose transport in Ca2+-tolerant myocytes from adult rat heart.
    Bihler I; McNevin SR; Sawh PC
    Biochim Biophys Acta; 1985 Aug; 846(2):208-15. PubMed ID: 2411296
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of strontium on calcium-dependent hexose transport in muscle.
    Bihler I; Charles P; Sawh PC
    Can J Physiol Pharmacol; 1986 Feb; 64(2):176-9. PubMed ID: 3516347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sarcolemmal glucose transport in Ca2+-tolerant myocytes from adult rat heart. Calcium dependence of insulin action.
    Bihler I; McNevin SR; Sawh PC
    Biochim Biophys Acta; 1985 Jan; 844(1):9-18. PubMed ID: 3881135
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of calcium in stimulation of sugar transport in muscle by lithium.
    Bigornia L; Bihler I
    Biochim Biophys Acta; 1985 Jun; 816(2):197-207. PubMed ID: 4005243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The 1987 Upjohn award lecture. The role of membrane transport in the control of glucose metabolism and its coupling to cellular function.
    Bihler I
    Can J Physiol Pharmacol; 1988 May; 66(5):549-60. PubMed ID: 3138012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insulin action on cardiac glucose transport. Studies on the role of the sodium pump.
    Eckel J; Reinauer H
    Adv Myocardiol; 1985; 6():105-11. PubMed ID: 2581294
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcium regulation of glycolysis, glucose oxidation, and fatty acid oxidation in the aerobic and ischemic heart.
    Schönekess BO; Brindley PG; Lopaschuk GD
    Can J Physiol Pharmacol; 1995 Nov; 73(11):1632-40. PubMed ID: 8789418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of 3-O-methyl-D-glucose uptake in isolated bovine adrenal chromaffin cells.
    Bigornia L; Wattis M; Bihler I
    Biochim Biophys Acta; 1986 Apr; 886(2):177-86. PubMed ID: 3083872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellular mechanisms responsible for the inotropic action of insulin on failing human myocardium.
    Hsu CH; Wei J; Chen YC; Yang SP; Tsai CS; Lin CI
    J Heart Lung Transplant; 2006 Sep; 25(9):1126-34. PubMed ID: 16962476
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium stimulates glucose transport in skeletal muscle by a pathway independent of contraction.
    Youn JH; Gulve EA; Holloszy JO
    Am J Physiol; 1991 Mar; 260(3 Pt 1):C555-61. PubMed ID: 2003578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of insulin and epinephrine on Na+-K+ and glucose transport in soleus muscle.
    Clausen T; Flatman JA
    Am J Physiol; 1987 Apr; 252(4 Pt 1):E492-9. PubMed ID: 3031991
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glucose uptake in isolated heart cells: studies on the role of insulin.
    Eckel J; Reinauer H
    Basic Res Cardiol; 1985; 80 Suppl 2():103-6. PubMed ID: 3933479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hyperglycemia activates glucose transport in rat skeletal muscle via a Ca(2+)-dependent mechanism.
    Nolte LA; Rincón J; Wahlström EO; Craig BW; Zierath JR; Wallberg-Henriksson H
    Diabetes; 1995 Nov; 44(11):1345-8. PubMed ID: 7589835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amylin and epinephrine have no direct effect on glucose transport in isolated rat soleus muscle.
    Pittner RA; Wolfe-Lopez D; Young AA; Rink TJ
    FEBS Lett; 1995 May; 365(1):98-100. PubMed ID: 7774725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of phenylarsine oxide on stimulation of glucose transport in rat skeletal muscle.
    Henriksen EJ; Holloszy JO
    Am J Physiol; 1990 Apr; 258(4 Pt 1):C648-53. PubMed ID: 2185640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of glucose transport in isolated adipocytes by levamisole.
    Basi NS; Thomaskutty KG; Pointer RH
    Can J Physiol Pharmacol; 1992 Aug; 70(8):1190-4. PubMed ID: 1473050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The stimulating effect of 3',5'-(cyclic)adenosine monophosphate and lipolytic hormones on 3-O-methylglucose transport and 45Ca2+ release in adipocytes and skeletal muscle of the rat.
    Rasmussen MJ; Clausen T
    Biochim Biophys Acta; 1982 Dec; 693(2):389-97. PubMed ID: 6297557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contraction-induced translocation of the glucose transporter Glut4 in isolated ventricular cardiomyocytes.
    Kolter T; Uphues I; Wichelhaus A; Reinauer H; Eckel J
    Biochem Biophys Res Commun; 1992 Dec; 189(2):1207-14. PubMed ID: 1472028
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.