These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 6437869)

  • 21. Guanyl-specific ribonuclease from the fungus Penicillium chrysogenum strain 152 and its complex with guanosine 3'-phosphate studied by nuclear magnetic resonance.
    Yakovlev GI; Karpeisky MY; Bezborodova SI; Beletskaja OP; Sakharovsky VG
    Eur J Biochem; 1980 Aug; 109(1):75-85. PubMed ID: 6250840
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Large-scale purification, crystallization and some physicochemical properties of extracellular guanyl-RNases C2 and Pch1].
    Bezborodova SI; Beletskaia OP; Grishchenko VM
    Biokhimiia; 1977 Sep; 42(9):1556-66. PubMed ID: 410458
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Specificity of extracellular alkaline RNAase from Penicillium chrysogenum 152A].
    Bezborodova SI; Markelova NY; Gulayeva VI
    Biokhimiia; 1975; 40(3):592-7. PubMed ID: 1110
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of primary sequence transpositions on the folding pathways of ribonuclease T1.
    Johnson JL; Raushel FM
    Biochemistry; 1996 Aug; 35(31):10223-33. PubMed ID: 8756488
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Purification and primary structure of a new guanylic acid specific ribonuclease from Pleurotus ostreatus.
    Nomura H; Inokuchi N; Kobayashi H; Koyama T; Iwama M; Ohgi K; Irie M
    J Biochem; 1994 Jul; 116(1):26-33. PubMed ID: 7798182
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Primary structure of nuclease P1 from Penicillium citrinum.
    Maekawa K; Tsunasawa S; Dibó G; Sakiyama F
    Eur J Biochem; 1991 Sep; 200(3):651-61. PubMed ID: 1915339
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of disulfide bonds by planned digestion and tandem mass spectrometry.
    Na S; Paek E; Choi JS; Kim D; Lee SJ; Kwon J
    Mol Biosyst; 2015 Apr; 11(4):1156-64. PubMed ID: 25703060
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Amino acid sequence analysis and characterization of a ribonuclease from starfish Asterias amurensis.
    Motoyoshi N; Kobayashi H; Itagaki T; Inokuchi N
    J Biochem; 2016 Sep; 160(3):131-9. PubMed ID: 26920046
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Binding modes of inhibitors of ribonuclease T1 as elucidated by analysis of two-dimensional NMR.
    Shimada I; Inagaki F
    Biochemistry; 1990 Jan; 29(3):757-64. PubMed ID: 2159788
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Study of splitting dinucleoside monophosphates by Penicillium brevicompactum RNAse].
    Krupianko VI; Bezborodova SI
    Biokhimiia; 1976 Aug; 41(8):1442-7. PubMed ID: 15646
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The amino acid sequence of human ribonuclease 4, a highly conserved ribonuclease that cleaves specifically on the 3' side of uridine.
    Zhou HM; Strydom DJ
    Eur J Biochem; 1993 Oct; 217(1):401-10. PubMed ID: 8223579
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Effect of culture medium components on the biosynthesis of acid ribonuclease by Penicillium brevicompactum cultures].
    Ezhov VA; Minasian AE; Popova IuM
    Prikl Biokhim Mikrobiol; 1975; 11(1):14-20. PubMed ID: 1168901
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Isolation and characterization of a cDNA clone encoding one IgE-binding fragment of Penicillium brevicompactum.
    Sevinc MS; Kumar V; Abebe M; Casley WL; Vijay HM
    Int Arch Allergy Immunol; 2005 Sep; 138(1):12-20. PubMed ID: 16088208
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Primary structure of a base non-specific and adenylic acid preferential ribonuclease from the fruit bodies of Lentinus edodes.
    Kobayashi H; Inokuchi N; Koyama T; Watanabe H; Iwama M; Ohgi K; Irie M
    Biosci Biotechnol Biochem; 1992 Dec; 56(12):2003-10. PubMed ID: 1369096
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Ribonuclease Ap1 from Aspergillus pallidus. Purification, primary structure and crystallization].
    Bezborodova SI; Ermekbaeva LA; Shliapnikov SV; Poliakov KM; Bezborodov AM
    Biokhimiia; 1988 Jun; 53(6):965-73. PubMed ID: 3140903
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Raman spectroscopic study on the structure of ribonuclease F1 and the binding mode of inhibitor.
    Takeuchi H; Harada I; Yoshida H
    Biochim Biophys Acta; 1991 Jul; 1078(3):307-12. PubMed ID: 1650248
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Determination of the NMR structure of Gln25-ribonuclease T1.
    Hatano K; Kojima M; Suzuki E; Tanokura M; Takahashi K
    Biol Chem; 2003 Aug; 384(8):1173-83. PubMed ID: 12974386
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A novel guanyl-preferable ribonuclease of Bacillus polymyxa: isolation and characterization of the enzyme.
    Dementiev AA; Mirgorodskaya OA; Moiseyev GP; Yakovlev GI; Shlyapnikov SV; Kirpichnikov MP
    Biochem Mol Biol Int; 1996 May; 39(1):159-70. PubMed ID: 8799338
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Refolding of the mixed disulphide of RNase T1 and glutathione.
    Freedman RB; Ruoppolo M
    Biochem Soc Trans; 1995 Feb; 23(1):68S. PubMed ID: 7758785
    [No Abstract]   [Full Text] [Related]  

  • 40. Hydrogen-tritium exchange and nuclear magnetic resonance titrations of the histidine residues in ribonuclease St and analysis of their microenvironment.
    Miyamoto K; Arata Y; Matsuo H; Narita K
    J Biochem; 1981 Jan; 89(1):49-59. PubMed ID: 6260763
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.