BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 6438056)

  • 1. Identification of methyl coenzyme M as an intermediate in methanogenesis from acetate in Methanosarcina spp.
    Lovley DR; White RH; Ferry JG
    J Bacteriol; 1984 Nov; 160(2):521-5. PubMed ID: 6438056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro methane and methyl coenzyme M formation from acetate: evidence that acetyl-CoA is the required intermediate activated form of acetate.
    Grahame DA; Stadtman TC
    Biochem Biophys Res Commun; 1987 Aug; 147(1):254-8. PubMed ID: 3115259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence that the heterodisulfide of coenzyme M and 7-mercaptoheptanoylthreonine phosphate is a product of the methylreductase reaction in Methanobacterium.
    Bobik TA; Olson KD; Noll KM; Wolfe RS
    Biochem Biophys Res Commun; 1987 Dec; 149(2):455-60. PubMed ID: 3122735
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acetate catabolism by Methanosarcina barkeri: evidence for involvement of carbon monoxide dehydrogenase, methyl coenzyme M, and methylreductase.
    Krzycki JA; Lehman LJ; Zeikus JG
    J Bacteriol; 1985 Sep; 163(3):1000-6. PubMed ID: 3928595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Levels of coenzyme F420, coenzyme M, hydrogenase, and methylcoenzyme M methylreductase in acetate-grown Methanosarcina.
    Baresi L; Wolfe RS
    Appl Environ Microbiol; 1981 Feb; 41(2):388-91. PubMed ID: 6786217
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methyl-coenzyme M, an intermediate in methanogenic dissimilation of C1 compounds by Methanosarcina barkeri.
    Shapiro S; Wolfe RS
    J Bacteriol; 1980 Feb; 141(2):728-34. PubMed ID: 6444945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Incorporation of coenzyme M into component C of methylcoenzyme M methylreductase during in vitro methanogenesis.
    Hartzell PL; Donnelly MI; Wolfe RS
    J Biol Chem; 1987 Apr; 262(12):5581-6. PubMed ID: 3106338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiological importance of the heterodisulfide of coenzyme M and 7-mercaptoheptanoylthreonine phosphate in the reduction of carbon dioxide to methane in Methanobacterium.
    Bobik TA; Wolfe RS
    Proc Natl Acad Sci U S A; 1988 Jan; 85(1):60-3. PubMed ID: 3124103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon monoxide-dependent methyl coenzyme M methylreductase in acetotrophic Methosarcina spp.
    Nelson MJ; Ferry JG
    J Bacteriol; 1984 Nov; 160(2):526-32. PubMed ID: 6501214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport of coenzyme M (2-mercaptoethanesulfonic acid) in Methanobacterium ruminantium.
    Balch WE; Wolfe RS
    J Bacteriol; 1979 Jan; 137(1):264-73. PubMed ID: 33148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coenzyme M derivatives and their effects on methane formation from carbon dioxide and methanol by cell extracts of Methanosarcina barkeri.
    Hutten TJ; De Jong MH; Peeters BP; van der Drift C; Vogels GD
    J Bacteriol; 1981 Jan; 145(1):27-34. PubMed ID: 6780512
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coupling of methyl coenzyme M reduction with carbon dioxide activation in extracts of Methanobacterium thermoautotrophicum.
    Romesser JA; Wolfe RS
    J Bacteriol; 1982 Nov; 152(2):840-7. PubMed ID: 6813316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of coenzyme M and formaldehyde in methanogenesis.
    Romesser JA; Wolfe RS
    Biochem J; 1981 Sep; 197(3):565-71. PubMed ID: 6798970
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the role of N-7-mercaptoheptanoyl-O-phospho-L-threonine (component B) in the enzymatic reduction of methyl-coenzyme M to methane.
    Ellermann J; Kobelt A; Pfaltz A; Thauer RK
    FEBS Lett; 1987 Aug; 220(2):358-62. PubMed ID: 3111890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methylthiol:coenzyme M methyltransferase from Methanosarcina barkeri, an enzyme of methanogenesis from dimethylsulfide and methylmercaptopropionate.
    Tallant TC; Krzycki JA
    J Bacteriol; 1997 Nov; 179(22):6902-11. PubMed ID: 9371433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dependence on membrane components of methanogenesis from methyl-CoM with formaldehyde or molecular hydrogen as electron donors.
    Deppenmeier U; Blaut M; Gottschalk G
    Eur J Biochem; 1989 Dec; 186(1-2):317-23. PubMed ID: 2513188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport of coenzyme M (2-mercaptoethanesulfonic acid) and methylcoenzyme M [(2-methylthio)ethanesulfonic acid] in Methanococcus voltae: identification of specific and general uptake systems.
    Dybas M; Konisky J
    J Bacteriol; 1989 Nov; 171(11):5866-71. PubMed ID: 2509421
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of tetrahydromethanopterin and cytoplasmic cofactor in methane synthesis.
    Sauer FD; Blackwell BA; Mahadevan S
    Biochem J; 1986 Apr; 235(2):453-8. PubMed ID: 3091008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Is coenzyme M bound to factor F430 in methanogenic bacteria? Experiments with Methanobrevibacter ruminantium.
    Hüster R; Gilles HH; Thauer RK
    Eur J Biochem; 1985 Apr; 148(1):107-11. PubMed ID: 3920049
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methane formation from methyl-coenzyme M in a system containing methyl-coenzyme M reductase, component B and reduced cobalamin.
    Ankel-Fuchs D; Thauer RK
    Eur J Biochem; 1986 Apr; 156(1):171-7. PubMed ID: 3082633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.